Abstract
The inclusion of uric acid in the incubation medium during copper-induced low-density lipoprotein (LDL) oxidation exerted either an antioxidant or pro-oxidant effect. The pro-oxidant effect, as mirrored by an enhanced formation of conjugated dienes, lipid peroxides, thiobarbituric acid-reactive substances and increase in negative charge, occurred when uric acid was added late during the inhibitory or lag phase and during the subsequent extensive propagation phase of copper-stimulated LDL oxidation. The pro-oxidant effect of uric acid was specific for copper-induced LDL oxidation and required the presence of copper as either Cu(I) or Cu(II). In addition, it became much more evident when the copper to LDL molar ratio was below a threshold value of approx. 50. In native LDL, the shift between the antioxidant and the pro-oxidant activities was related to the availability of lipid hydroperoxides formed during the early phases of copper-promoted LDL oxidation. The artificial enrichment of isolated LDL with alpha-tocopherol delayed the onset of the pro-oxidant activity of uric acid and also decreased the rate of stimulated lipid peroxidation. However, previous depletion of alpha-tocopherol was not a prerequisite for unmasking the pro-oxidant activity of uric acid, since this became apparent even when alpha-tocopherol was still present in significant amounts (more than 50% of the original values) in LDL. These results suggest, irrespective of the levels of endogenous alpha-tocopherol, that uric acid may enhance LDL oxidation by reducing Cu(II) to Cu(I), thus making more Cu(I) available for subsequent radical decomposition of lipid peroxides and propagation reactions.
Full Text
The Full Text of this article is available as a PDF (211.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abuja P. M., Albertini R., Esterbauer H. Simulation of the induction of oxidation of low-density lipoprotein by high copper concentrations: evidence for a nonconstant rate of initiation. Chem Res Toxicol. 1997 Jun;10(6):644–651. doi: 10.1021/tx9700073. [DOI] [PubMed] [Google Scholar]
- Avogaro P., Bon G. B., Cazzolato G. Presence of a modified low density lipoprotein in humans. Arteriosclerosis. 1988 Jan-Feb;8(1):79–87. [PubMed] [Google Scholar]
- Bagnati M., Bordone R., Perugini C., Cau C., Albano E., Bellomo G. Cu(I) availability paradoxically antagonizes antioxidant consumption and lipid peroxidation during the initiation phase of copper-induced LDL oxidation. Biochem Biophys Res Commun. 1998 Dec 18;253(2):235–240. doi: 10.1006/bbrc.1998.9777. [DOI] [PubMed] [Google Scholar]
- Becker B. F. Towards the physiological function of uric acid. Free Radic Biol Med. 1993 Jun;14(6):615–631. doi: 10.1016/0891-5849(93)90143-i. [DOI] [PubMed] [Google Scholar]
- Berliner J. A., Heinecke J. W. The role of oxidized lipoproteins in atherogenesis. Free Radic Biol Med. 1996;20(5):707–727. doi: 10.1016/0891-5849(95)02173-6. [DOI] [PubMed] [Google Scholar]
- Bowry V. W., Ingold K. U., Stocker R. Vitamin E in human low-density lipoprotein. When and how this antioxidant becomes a pro-oxidant. Biochem J. 1992 Dec 1;288(Pt 2):341–344. doi: 10.1042/bj2880341. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Christison J. K., Rye K. A., Stocker R. Exchange of oxidized cholesteryl linoleate between LDL and HDL mediated by cholesteryl ester transfer protein. J Lipid Res. 1995 Sep;36(9):2017–2026. [PubMed] [Google Scholar]
- Darley-Usmar V. M., Hogg N., O'Leary V. J., Wilson M. T., Moncada S. The simultaneous generation of superoxide and nitric oxide can initiate lipid peroxidation in human low density lipoprotein. Free Radic Res Commun. 1992;17(1):9–20. doi: 10.3109/10715769209061085. [DOI] [PubMed] [Google Scholar]
- Daugherty A., Dunn J. L., Rateri D. L., Heinecke J. W. Myeloperoxidase, a catalyst for lipoprotein oxidation, is expressed in human atherosclerotic lesions. J Clin Invest. 1994 Jul;94(1):437–444. doi: 10.1172/JCI117342. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Esterbauer H., Gebicki J., Puhl H., Jürgens G. The role of lipid peroxidation and antioxidants in oxidative modification of LDL. Free Radic Biol Med. 1992 Oct;13(4):341–390. doi: 10.1016/0891-5849(92)90181-f. [DOI] [PubMed] [Google Scholar]
- Gieseg S. P., Esterbauer H. Low density lipoprotein is saturable by pro-oxidant copper. FEBS Lett. 1994 May 2;343(3):188–194. doi: 10.1016/0014-5793(94)80553-9. [DOI] [PubMed] [Google Scholar]
- Hazell L. J., Stocker R. Oxidation of low-density lipoprotein with hypochlorite causes transformation of the lipoprotein into a high-uptake form for macrophages. Biochem J. 1993 Feb 15;290(Pt 1):165–172. doi: 10.1042/bj2900165. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kamal-Eldin A., Appelqvist L. A. The chemistry and antioxidant properties of tocopherols and tocotrienols. Lipids. 1996 Jul;31(7):671–701. doi: 10.1007/BF02522884. [DOI] [PubMed] [Google Scholar]
- Kaur H., Halliwell B. Action of biologically-relevant oxidizing species upon uric acid. Identification of uric acid oxidation products. Chem Biol Interact. 1990;73(2-3):235–247. doi: 10.1016/0009-2797(90)90006-9. [DOI] [PubMed] [Google Scholar]
- Kontush A., Meyer S., Finckh B., Kohlschütter A., Beisiegel U. Alpha-tocopherol as a reductant for Cu(II) in human lipoproteins. Triggering role in the initiation of lipoprotein oxidation. J Biol Chem. 1996 May 10;271(19):11106–11112. doi: 10.1074/jbc.271.19.11106. [DOI] [PubMed] [Google Scholar]
- Kühn H., Belkner J., Suzuki H., Yamamoto S. Oxidative modification of human lipoproteins by lipoxygenases of different positional specificities. J Lipid Res. 1994 Oct;35(10):1749–1759. [PubMed] [Google Scholar]
- Lynch S. M., Frei B. Reduction of copper, but not iron, by human low density lipoprotein (LDL). Implications for metal ion-dependent oxidative modification of LDL. J Biol Chem. 1995 Mar 10;270(10):5158–5163. doi: 10.1074/jbc.270.10.5158. [DOI] [PubMed] [Google Scholar]
- Maiorino M., Zamburlini A., Roveri A., Ursini F. Prooxidant role of vitamin E in copper induced lipid peroxidation. FEBS Lett. 1993 Sep 13;330(2):174–176. doi: 10.1016/0014-5793(93)80267-x. [DOI] [PubMed] [Google Scholar]
- Maples K. R., Mason R. P. Free radical metabolite of uric acid. J Biol Chem. 1988 Feb 5;263(4):1709–1712. [PubMed] [Google Scholar]
- Motchnik P. A., Frei B., Ames B. N. Measurement of antioxidants in human blood plasma. Methods Enzymol. 1994;234:269–279. doi: 10.1016/0076-6879(94)34094-3. [DOI] [PubMed] [Google Scholar]
- Niki E. Antioxidants in relation to lipid peroxidation. Chem Phys Lipids. 1987 Jul-Sep;44(2-4):227–253. doi: 10.1016/0009-3084(87)90052-1. [DOI] [PubMed] [Google Scholar]
- Nourooz-Zadeh J., Tajaddini-Sarmadi J., Wolff S. P. Measurement of plasma hydroperoxide concentrations by the ferrous oxidation-xylenol orange assay in conjunction with triphenylphosphine. Anal Biochem. 1994 Aug 1;220(2):403–409. doi: 10.1006/abio.1994.1357. [DOI] [PubMed] [Google Scholar]
- Nyyssönen K., Porkkala-Sarataho E., Kaikkonen J., Salonen J. T. Ascorbate and urate are the strongest determinants of plasma antioxidative capacity and serum lipid resistance to oxidation in Finnish men. Atherosclerosis. 1997 Apr;130(1-2):223–233. doi: 10.1016/s0021-9150(96)06064-9. [DOI] [PubMed] [Google Scholar]
- Perugini C., Seccia M., Albano E., Bellomo G. The dynamic reduction of Cu(II) to Cu(I) and not Cu(I) availability is a sufficient trigger for low density lipoprotein oxidation. Biochim Biophys Acta. 1997 Aug 16;1347(2-3):191–198. doi: 10.1016/s0005-2760(97)00063-5. [DOI] [PubMed] [Google Scholar]
- Perugini C., Seccia M., Bagnati M., Cau C., Albano E., Bellomo G. Different mechanisms are progressively recruited to promote Cu(II) reduction by isolated human low-density lipoprotein undergoing oxidation. Free Radic Biol Med. 1998 Sep;25(4-5):519–528. doi: 10.1016/s0891-5849(98)00075-6. [DOI] [PubMed] [Google Scholar]
- Proudfoot J. M., Puddey I. B., Beilin L. J., Stocker R., Croft K. D. Unexpected dose response of copper concentration on lipoprotein oxidation in serum: discovery of a unique peroxidase-like activity of urate/albumin in the presence of high copper concentrations. Free Radic Biol Med. 1997;23(5):699–705. doi: 10.1016/s0891-5849(97)00021-x. [DOI] [PubMed] [Google Scholar]
- Retsky K. L., Frei B. Vitamin C prevents metal ion-dependent initiation and propagation of lipid peroxidation in human low-density lipoprotein. Biochim Biophys Acta. 1995 Aug 3;1257(3):279–287. doi: 10.1016/0005-2760(95)00089-u. [DOI] [PubMed] [Google Scholar]
- Seccia M., Albano E., Bellomo G. Suitability of chemical in vitro models to investigate LDL oxidation: study with different initiating conditions in native and alpha-tocopherol-supplemented LDL. Clin Chem. 1997 Aug;43(8 Pt 1):1436–1441. [PubMed] [Google Scholar]
- Shamsi F. A., Husain S., Hadi S. M. DNA breakage by uric acid and Cu(II): binding of uric acid to DNA and biological activity of the reaction. J Biochem Toxicol. 1996;11(2):67–71. doi: 10.1002/(SICI)1522-7146(1996)11:2<67::AID-JBT3>3.0.CO;2-S. [DOI] [PubMed] [Google Scholar]
- Stait S. E., Leake D. S. Ascorbic acid can either increase or decrease low density lipoprotein modification. FEBS Lett. 1994 Mar 21;341(2-3):263–267. doi: 10.1016/0014-5793(94)80469-9. [DOI] [PubMed] [Google Scholar]
- Steinberg D. Low density lipoprotein oxidation and its pathobiological significance. J Biol Chem. 1997 Aug 22;272(34):20963–20966. doi: 10.1074/jbc.272.34.20963. [DOI] [PubMed] [Google Scholar]
- Witting P. K., Bowry V. W., Stocker R. Inverse deuterium kinetic isotope effect for peroxidation in human low-density lipoprotein (LDL): a simple test for tocopherol-mediated peroxidation of LDL lipids. FEBS Lett. 1995 Nov 13;375(1-2):45–49. doi: 10.1016/0014-5793(95)01172-b. [DOI] [PubMed] [Google Scholar]
- Yamanaka N., Oda O., Nagao S. Green tea catechins such as (-)-epicatechin and (-)-epigallocatechin accelerate Cu2+-induced low density lipoprotein oxidation in propagation phase. FEBS Lett. 1997 Jan 20;401(2-3):230–234. doi: 10.1016/s0014-5793(96)01455-x. [DOI] [PubMed] [Google Scholar]
- Yamanaka N., Oda O., Nagao S. Prooxidant activity of caffeic acid, dietary non-flavonoid phenolic acid, on Cu2+-induced low density lipoprotein oxidation. FEBS Lett. 1997 Mar 24;405(2):186–190. doi: 10.1016/s0014-5793(97)00185-3. [DOI] [PubMed] [Google Scholar]
- Ziouzenkova O., Sevanian A., Abuja P. M., Ramos P., Esterbauer H. Copper can promote oxidation of LDL by markedly different mechanisms. Free Radic Biol Med. 1998 Mar 1;24(4):607–623. doi: 10.1016/s0891-5849(97)00324-9. [DOI] [PubMed] [Google Scholar]