Abstract
Evidence accumulated over the years suggests that human erythrocyte membrane protein 4.2 is one of the proteins involved in strengthening the cytoskeleton-membrane interactions in the red blood cell. Deficiency of protein 4.2 is linked with a variety of hereditary haemolytic anaemia. However, the interactions of protein 4.2 with other proteins of the erythrocyte membrane remain poorly understood. The major membrane-binding site for protein 4.2 resides on the cytoplasmic domain of band 3 (CDB3). In order to carry out an initial characterization of its interaction with the CDB3, protein 4. 2 was subjected to proteolytic cleavage and gel renaturation assay, and the 23-kDa N-terminal domain was found to interact with band 3. This domain contained two putative palmitoylatable cysteine residues, of which cysteine 203 was identified as the palmitoylatable cysteine. Recombinant glutathione S-transferase-fusion peptides derived from this domain were characterized with respect to their ability to interact with the CDB3. Whereas these studies do not rule out the involvement of other subsites on protein 4.2 in interaction with the CDB3, the evidence suggests that the region encompassing amino acid residues 187-211 is one of the domains critical for the protein 4.2-CDB3 interaction. This is also the first demonstration that palmitoylation serves as a positive modulator of this interaction.
Full Text
The Full Text of this article is available as a PDF (176.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anderson R. A., Lovrien R. E. Glycophorin is linked by band 4.1 protein to the human erythrocyte membrane skeleton. Nature. 1984 Feb 16;307(5952):655–658. doi: 10.1038/307655a0. [DOI] [PubMed] [Google Scholar]
- Anderson R. A., Marchesi V. T. Regulation of the association of membrane skeletal protein 4.1 with glycophorin by a polyphosphoinositide. Nature. 1985 Nov 21;318(6043):295–298. doi: 10.1038/318295a0. [DOI] [PubMed] [Google Scholar]
- Azim A. C., Marfatia S. M., Korsgren C., Dotimas E., Cohen C. M., Chishti A. H. Human erythrocyte dematin and protein 4.2 (pallidin) are ATP binding proteins. Biochemistry. 1996 Mar 5;35(9):3001–3006. doi: 10.1021/bi951745y. [DOI] [PubMed] [Google Scholar]
- Becker P. S., Cohen C. M., Lux S. E. The effect of mild diamide oxidation on the structure and function of human erythrocyte spectrin. J Biol Chem. 1986 Apr 5;261(10):4620–4628. [PubMed] [Google Scholar]
- Bennett V. Proteins involved in membrane--cytoskeleton association in human erythrocytes: spectrin, ankyrin, and band 3. Methods Enzymol. 1983;96:313–324. doi: 10.1016/s0076-6879(83)96029-9. [DOI] [PubMed] [Google Scholar]
- Bennett V. The spectrin-actin junction of erythrocyte membrane skeletons. Biochim Biophys Acta. 1989 Jan 18;988(1):107–121. doi: 10.1016/0304-4157(89)90006-3. [DOI] [PubMed] [Google Scholar]
- Bolton A. E., Hunter W. M. The labelling of proteins to high specific radioactivities by conjugation to a 125I-containing acylating agent. Biochem J. 1973 Jul;133(3):529–539. doi: 10.1042/bj1330529. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bonner W. M., Laskey R. A. A film detection method for tritium-labelled proteins and nucleic acids in polyacrylamide gels. Eur J Biochem. 1974 Jul 1;46(1):83–88. doi: 10.1111/j.1432-1033.1974.tb03599.x. [DOI] [PubMed] [Google Scholar]
- Branton D., Cohen C. M., Tyler J. Interaction of cytoskeletal proteins on the human erythrocyte membrane. Cell. 1981 Apr;24(1):24–32. doi: 10.1016/0092-8674(81)90497-9. [DOI] [PubMed] [Google Scholar]
- Cohen C. M., Dotimas E., Korsgren C. Human erythrocyte membrane protein band 4.2 (pallidin). Semin Hematol. 1993 Apr;30(2):119–137. [PubMed] [Google Scholar]
- Cohen C. M., Tyler J. M., Branton D. Spectrin-actin associations studied by electron microscopy of shadowed preparations. Cell. 1980 Oct;21(3):875–883. doi: 10.1016/0092-8674(80)90451-1. [DOI] [PubMed] [Google Scholar]
- Corrado K., Mills P. L., Chamberlain J. S. Deletion analysis of the dystrophin-actin binding domain. FEBS Lett. 1994 May 16;344(2-3):255–260. doi: 10.1016/0014-5793(94)00397-1. [DOI] [PubMed] [Google Scholar]
- Das A. K., Bhattacharya R., Kundu M., Chakrabarti P., Basu J. Human erythrocyte membrane protein 4.2 is palmitoylated. Eur J Biochem. 1994 Sep 1;224(2):575–580. doi: 10.1111/j.1432-1033.1994.00575.x. [DOI] [PubMed] [Google Scholar]
- Das A. K., Dasgupta B., Bhattacharya R., Basu J. Purification and biochemical characterization of a protein-palmitoyl acyltransferase from human erythrocytes. J Biol Chem. 1997 Apr 25;272(17):11021–11025. doi: 10.1074/jbc.272.17.11021. [DOI] [PubMed] [Google Scholar]
- Dotimas E., Speicher D. W., GuptaRoy B., Cohen C. M. Structural domain mapping and phosphorylation of human erythrocyte pallidin (band 4.2). Biochim Biophys Acta. 1993 May 14;1148(1):19–29. doi: 10.1016/0005-2736(93)90156-t. [DOI] [PubMed] [Google Scholar]
- Drapeau G. R. Protease from Staphyloccus aureus. Methods Enzymol. 1976;45:469–475. doi: 10.1016/s0076-6879(76)45041-3. [DOI] [PubMed] [Google Scholar]
- Fowler V., Taylor D. L. Spectrin plus band 4.1 cross-link actin. Regulation by micromolar calcium. J Cell Biol. 1980 May;85(2):361–376. doi: 10.1083/jcb.85.2.361. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gardner K., Bennett V. Modulation of spectrin-actin assembly by erythrocyte adducin. Nature. 1987 Jul 23;328(6128):359–362. doi: 10.1038/328359a0. [DOI] [PubMed] [Google Scholar]
- Ghanem A., Pothier B., Marechal J., Ducluzeau M. T., Morle L., Alloisio N., Feo C., Ben Abdeladhim A., Fattoum S., Delaunay J. A haemolytic syndrome associated with the complete absence of red cell membrane protein 4.2 in two Tunisian siblings. Br J Haematol. 1990 Jul;75(3):414–420. doi: 10.1111/j.1365-2141.1990.tb04357.x. [DOI] [PubMed] [Google Scholar]
- Golan D. E., Corbett J. D., Korsgren C., Thatte H. S., Hayette S., Yawata Y., Cohen C. M. Control of band 3 lateral and rotational mobility by band 4.2 in intact erythrocytes: release of band 3 oligomers from low-affinity binding sites. Biophys J. 1996 Mar;70(3):1534–1542. doi: 10.1016/S0006-3495(96)79717-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hayette S., Dhermy D., dos Santos M. E., Bozon M., Drenckhahn D., Alloisio N., Texier P., Delaunay J., Morlé L. A deletional frameshift mutation in protein 4.2 gene (allele 4.2 Lisboa) associated with hereditary hemolytic anemia. Blood. 1995 Jan 1;85(1):250–256. [PubMed] [Google Scholar]
- Hemming N. J., Anstee D. J., Staricoff M. A., Tanner M. J., Mohandas N. Identification of the membrane attachment sites for protein 4.1 in the human erythrocyte. J Biol Chem. 1995 Mar 10;270(10):5360–5366. doi: 10.1074/jbc.270.10.5360. [DOI] [PubMed] [Google Scholar]
- Ideguchi H., Nishimura J., Nawata H., Hamasaki N. A genetic defect of erythrocyte band 4.2 protein associated with hereditary spherocytosis. Br J Haematol. 1990 Mar;74(3):347–353. doi: 10.1111/j.1365-2141.1990.tb02594.x. [DOI] [PubMed] [Google Scholar]
- Kanzaki A., Yawata Y., Yawata A., Inoue T., Okamoto N., Wada H., Harano T., Harano K., Wilmotte R., Hayette S. Band 4.2 Komatsu: 523 GAT-->TAT (175 Asp-->Tyr) in exon 4 of the band 4.2 gene associated with total deficiency of band 4.2, hemolytic anemia with ovalostomatocytosis and marked disruption of the cytoskeletal network. Int J Hematol. 1995 Jun;61(4):165–178. doi: 10.1016/0925-5710(95)00372-y. [DOI] [PubMed] [Google Scholar]
- Korsgren C., Cohen C. M. Associations of human erythrocyte band 4.2. Binding to ankyrin and to the cytoplasmic domain of band 3. J Biol Chem. 1988 Jul 25;263(21):10212–10218. [PubMed] [Google Scholar]
- Korsgren C., Cohen C. M. Organization of the gene for human erythrocyte membrane protein 4.2: structural similarities with the gene for the a subunit of factor XIII. Proc Natl Acad Sci U S A. 1991 Jun 1;88(11):4840–4844. doi: 10.1073/pnas.88.11.4840. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Korsgren C., Cohen C. M. Purification and properties of human erythrocyte band 4.2. Association with the cytoplasmic domain of band 3. J Biol Chem. 1986 Apr 25;261(12):5536–5543. [PubMed] [Google Scholar]
- Korsgren C., Lawler J., Lambert S., Speicher D., Cohen C. M. Complete amino acid sequence and homologies of human erythrocyte membrane protein band 4.2. Proc Natl Acad Sci U S A. 1990 Jan;87(2):613–617. doi: 10.1073/pnas.87.2.613. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Marfatia S. M., Lue R. A., Branton D., Chishti A. H. In vitro binding studies suggest a membrane-associated complex between erythroid p55, protein 4.1, and glycophorin C. J Biol Chem. 1994 Mar 25;269(12):8631–8634. [PubMed] [Google Scholar]
- Matsudaira P. Sequence from picomole quantities of proteins electroblotted onto polyvinylidene difluoride membranes. J Biol Chem. 1987 Jul 25;262(21):10035–10038. [PubMed] [Google Scholar]
- Mohandas N., Chasis J. A. Red blood cell deformability, membrane material properties and shape: regulation by transmembrane, skeletal and cytosolic proteins and lipids. Semin Hematol. 1993 Jul;30(3):171–192. [PubMed] [Google Scholar]
- Mohandas N., Evans E. Mechanical properties of the red cell membrane in relation to molecular structure and genetic defects. Annu Rev Biophys Biomol Struct. 1994;23:787–818. doi: 10.1146/annurev.bb.23.060194.004035. [DOI] [PubMed] [Google Scholar]
- Morrow J. S., Marchesi V. T. Self-assembly of spectrin oligomers in vitro: a basis for a dynamic cytoskeleton. J Cell Biol. 1981 Feb;88(2):463–468. doi: 10.1083/jcb.88.2.463. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Palek J., Lambert S. Genetics of the red cell membrane skeleton. Semin Hematol. 1990 Oct;27(4):290–332. [PubMed] [Google Scholar]
- Peters L. L., Lux S. E. Ankyrins: structure and function in normal cells and hereditary spherocytes. Semin Hematol. 1993 Apr;30(2):85–118. [PubMed] [Google Scholar]
- Platt O. S., Lux S. E., Falcone J. F. A highly conserved region of human erythrocyte ankyrin contains the capacity to bind spectrin. J Biol Chem. 1993 Nov 15;268(32):24421–24426. [PubMed] [Google Scholar]
- Pridmore R. D. New and versatile cloning vectors with kanamycin-resistance marker. Gene. 1987;56(2-3):309–312. doi: 10.1016/0378-1119(87)90149-1. [DOI] [PubMed] [Google Scholar]
- Risinger M. A., Dotimas E. M., Cohen C. M. Human erythrocyte protein 4.2, a high copy number membrane protein, is N-myristylated. J Biol Chem. 1992 Mar 15;267(8):5680–5685. [PubMed] [Google Scholar]
- Rybicki A. C., Heath R., Wolf J. L., Lubin B., Schwartz R. S. Deficiency of protein 4.2 in erythrocytes from a patient with a Coombs negative hemolytic anemia. Evidence for a role of protein 4.2 in stabilizing ankyrin on the membrane. J Clin Invest. 1988 Mar;81(3):893–901. doi: 10.1172/JCI113400. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rybicki A. C., Musto S., Schwartz R. S. Decreased content of protein 4.2 in ankyrin-deficient normoblastosis (nb/nb) mouse red blood cells: evidence for ankyrin enhancement of protein 4.2 membrane binding. Blood. 1995 Nov 1;86(9):3583–3589. [PubMed] [Google Scholar]
- Rybicki A. C., Musto S., Schwartz R. S. Identification of a band-3 binding site near the N-terminus of erythrocyte membrane protein 4.2. Biochem J. 1995 Jul 15;309(Pt 2):677–681. doi: 10.1042/bj3090677. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rybicki A. C., Schwartz R. S., Hustedt E. J., Cobb C. E. Increased rotational mobility and extractability of band 3 from protein 4.2-deficient erythrocyte membranes: evidence of a role for protein 4.2 in strengthening the band 3-cytoskeleton linkage. Blood. 1996 Oct 1;88(7):2745–2753. [PubMed] [Google Scholar]
- Sato S. B., Ohnishi S. Interaction of a peripheral protein of the erythrocyte membrane, band 4.1, with phosphatidylserine-containing liposomes and erythrocyte inside-out vesicles. Eur J Biochem. 1983 Jan 17;130(1):19–25. doi: 10.1111/j.1432-1033.1983.tb07111.x. [DOI] [PubMed] [Google Scholar]
- Schägger H., von Jagow G. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem. 1987 Nov 1;166(2):368–379. doi: 10.1016/0003-2697(87)90587-2. [DOI] [PubMed] [Google Scholar]
- Sung L. A., Chien S., Chang L. S., Lambert K., Bliss S. A., Bouhassira E. E., Nagel R. L., Schwartz R. S., Rybicki A. C. Molecular cloning of human protein 4.2: a major component of the erythrocyte membrane. Proc Natl Acad Sci U S A. 1990 Feb;87(3):955–959. doi: 10.1073/pnas.87.3.955. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tu Y., Wang J., Ross E. M. Inhibition of brain Gz GAP and other RGS proteins by palmitoylation of G protein alpha subunits. Science. 1997 Nov 7;278(5340):1132–1135. doi: 10.1126/science.278.5340.1132. [DOI] [PubMed] [Google Scholar]
- Way M., Pope B., Cross R. A., Kendrick-Jones J., Weeds A. G. Expression of the N-terminal domain of dystrophin in E. coli and demonstration of binding to F-actin. FEBS Lett. 1992 Apr 27;301(3):243–245. doi: 10.1016/0014-5793(92)80249-g. [DOI] [PubMed] [Google Scholar]
- Weaver D. C., Pasternack G. R., Marchesi V. T. The structural basis of ankyrin function. II. Identification of two functional domains. J Biol Chem. 1984 May 25;259(10):6170–6175. [PubMed] [Google Scholar]
- Workman R. F., Low P. S. Biochemical analysis of potential sites for protein 4.1-mediated anchoring of the spectrin-actin skeleton to the erythrocyte membrane. J Biol Chem. 1998 Mar 13;273(11):6171–6176. doi: 10.1074/jbc.273.11.6171. [DOI] [PubMed] [Google Scholar]
- Yawata Y., Kanzaki A., Inoue T., Ata K., Wada H., Okamoto N., Higo I., Yawata A., Sugihara T., Yamada O. Red cell membrane disorders in the Japanese population: clinical, biochemical, electron microscopic, and genetic studies. Int J Hematol. 1994 Jul;60(1):23–38. [PubMed] [Google Scholar]
- Yawata Y. Red cell membrane protein band 4.2: phenotypic, genetic and electron microscopic aspects. Biochim Biophys Acta. 1994 Feb 16;1204(2):131–148. doi: 10.1016/0167-4838(94)90001-9. [DOI] [PubMed] [Google Scholar]