Abstract
To examine regulatory mechanisms of sheep interferon tau (oIFNtau) gene expression, potential enhancer/silencer elements of the oIFNtau gene were examined using a transient transfection system with oIFNtau gene-chloramphenicol acetyltransferase (oIFNtau-CAT) reporter constructs in human choriocarcinoma cells, JEG3. Experiments with 5'-deletion constructs revealed that the upstream regions from bases -654 to -607 and from bases -606 to -555 were essential for oIFNtau gene expression. In a heterologous transcriptional system in which the upstream regions of oIFNtau were inserted in front of simian virus 40 (SV40) promoter, the regions between bases -654 and -555 were determined as being the enhancer region required for oIFNtau-SV40-CAT transactivation. A subsequent study with the oIFNtau-CAT constructs lacking the upstream region between bases -542 and -124 revealed that, in addition to the further upstream region between bases -1000 and -654, the sequences from bases -543 to -452 seemed to act as silencer regions. The oIFNtau-CAT constructs with site-specific mutagenesis revealed that multiple enhancer elements existed between bases -654 and -555 of the oIFNtau gene. On the basis of nucleotide sequence analysis, there are numerous sites between bases -654 and -555 to which potential transcriptional factors, AP-1, GATA and GATA-related proteins, could bind. Furthermore, gel mobility-shift assays revealed that AP-1 or other nuclear factors could bind to these elements. In co-transfection studies, the expression of c-Jun plus c-Fos enhanced the transactivation of oIFNtau-CAT but the expression of GATA-1, GATA-2 or GATA-3 did not. Taken together, these results suggest that the upstream region between bases -654 and -555 could be considered as the enhancer region for oIFNtau gene transactivation.
Full Text
The Full Text of this article is available as a PDF (167.7 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ashworth C. J., Bazer F. W. Changes in ovine conceptus and endometrial function following asynchronous embryo transfer or administration of progesterone. Biol Reprod. 1989 Feb;40(2):425–433. doi: 10.1095/biolreprod40.2.425. [DOI] [PubMed] [Google Scholar]
- Charlier M., Hue D., Boisnard M., Martal J., Gaye P. Cloning and structural analysis of two distinct families of ovine interferon-alpha genes encoding functional class II and trophoblast (oTP) alpha-interferons. Mol Cell Endocrinol. 1991 Apr;76(1-3):161–171. doi: 10.1016/0303-7207(91)90270-3. [DOI] [PubMed] [Google Scholar]
- Cross J. C., Roberts R. M. Constitutive and trophoblast-specific expression of a class of bovine interferon genes. Proc Natl Acad Sci U S A. 1991 May 1;88(9):3817–3821. doi: 10.1073/pnas.88.9.3817. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ezashi T., Ealy A. D., Ostrowski M. C., Roberts R. M. Control of interferon-tau gene expression by Ets-2. Proc Natl Acad Sci U S A. 1998 Jul 7;95(14):7882–7887. doi: 10.1073/pnas.95.14.7882. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Farin C. E., Cross J. C., Tindle N. A., Murphy C. N., Farin P. W., Roberts R. M. Induction of trophoblastic interferon expression in ovine blastocysts after treatment with double-stranded RNA. J Interferon Res. 1991 Jun;11(3):151–157. doi: 10.1089/jir.1991.11.151. [DOI] [PubMed] [Google Scholar]
- Fujita T., Kimura Y., Miyamoto M., Barsoumian E. L., Taniguchi T. Induction of endogenous IFN-alpha and IFN-beta genes by a regulatory transcription factor, IRF-1. Nature. 1989 Jan 19;337(6204):270–272. doi: 10.1038/337270a0. [DOI] [PubMed] [Google Scholar]
- Godkin J. D., Bazer F. W., Moffatt J., Sessions F., Roberts R. M. Purification and properties of a major, low molecular weight protein released by the trophoblast of sheep blastocysts at day 13-21. J Reprod Fertil. 1982 May;65(1):141–150. doi: 10.1530/jrf.0.0650141. [DOI] [PubMed] [Google Scholar]
- Guesdon F. M., Stewart H. J., Flint A. P. Negative regulatory domains in a trophoblast interferon promoter. J Mol Endocrinol. 1996 Apr;16(2):99–106. doi: 10.1677/jme.0.0160099. [DOI] [PubMed] [Google Scholar]
- Halazonetis T. D., Georgopoulos K., Greenberg M. E., Leder P. c-Jun dimerizes with itself and with c-Fos, forming complexes of different DNA binding affinities. Cell. 1988 Dec 2;55(5):917–924. doi: 10.1016/0092-8674(88)90147-x. [DOI] [PubMed] [Google Scholar]
- Hemsley A., Arnheim N., Toney M. D., Cortopassi G., Galas D. J. A simple method for site-directed mutagenesis using the polymerase chain reaction. Nucleic Acids Res. 1989 Aug 25;17(16):6545–6551. doi: 10.1093/nar/17.16.6545. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Imakawa K., Anthony R. V., Kazemi M., Marotti K. R., Polites H. G., Roberts R. M. Interferon-like sequence of ovine trophoblast protein secreted by embryonic trophectoderm. 1987 Nov 26-Dec 2Nature. 330(6146):377–379. doi: 10.1038/330377a0. [DOI] [PubMed] [Google Scholar]
- Imakawa K., Carlson K. D., McGuire W. J., Christenson R. K., Taylor A. Enhancement of ovine trophoblast interferon by granulocyte macrophage-colony stimulating factor: possible involvement of protein kinase C. J Mol Endocrinol. 1997 Oct;19(2):121–130. doi: 10.1677/jme.0.0190121. [DOI] [PubMed] [Google Scholar]
- Imakawa K., Helmer S. D., Nephew K. P., Meka C. S., Christenson R. K. A novel role for GM-CSF: enhancement of pregnancy specific interferon production, ovine trophoblast protein-1. Endocrinology. 1993 Apr;132(4):1869–1871. doi: 10.1210/endo.132.4.7681767. [DOI] [PubMed] [Google Scholar]
- Imakawa K., Ji Y., Yamaguchi H., Tamura K., Weber L. W., Sakai S., Christenson R. K. Co-expression of transforming growth factor beta and interferon tau during peri-implantation period in the ewe. Endocr J. 1998 Aug;45(4):441–450. doi: 10.1507/endocrj.45.441. [DOI] [PubMed] [Google Scholar]
- Leaman D. W., Cross J. C., Roberts R. M. Multiple regulatory elements are required to direct trophoblast interferon gene expression in choriocarcinoma cells and trophectoderm. Mol Endocrinol. 1994 Apr;8(4):456–468. doi: 10.1210/mend.8.4.8052267. [DOI] [PubMed] [Google Scholar]
- Lee W., Mitchell P., Tjian R. Purified transcription factor AP-1 interacts with TPA-inducible enhancer elements. Cell. 1987 Jun 19;49(6):741–752. doi: 10.1016/0092-8674(87)90612-x. [DOI] [PubMed] [Google Scholar]
- Martal J., Lacroix M. C., Loudes C., Saunier M., Wintenberger-Torrès S. Trophoblastin, an antiluteolytic protein present in early pregnancy in sheep. J Reprod Fertil. 1979 May;56(1):63–73. doi: 10.1530/jrf.0.0560063. [DOI] [PubMed] [Google Scholar]
- Nephew K. P., Whaley A. E., Christenson R. K., Imakawa K. Differential expression of distinct mRNAs for ovine trophoblast protein-1 and related sheep type I interferons. Biol Reprod. 1993 Apr;48(4):768–778. doi: 10.1095/biolreprod48.4.768. [DOI] [PubMed] [Google Scholar]
- Pontzer C. H., Bazer F. W., Johnson H. M. Antiproliferative activity of a pregnancy recognition hormone, ovine trophoblast protein-1. Cancer Res. 1991 Oct 1;51(19):5304–5307. [PubMed] [Google Scholar]
- Pontzer C. H., Torres B. A., Vallet J. L., Bazer F. W., Johnson H. M. Antiviral activity of the pregnancy recognition hormone ovine trophoblast protein-1. Biochem Biophys Res Commun. 1988 Apr 29;152(2):801–807. doi: 10.1016/s0006-291x(88)80109-8. [DOI] [PubMed] [Google Scholar]
- Roberts R. M., Cross J. C., Leaman D. W. Interferons as hormones of pregnancy. Endocr Rev. 1992 Aug;13(3):432–452. doi: 10.1210/edrv-13-3-432. [DOI] [PubMed] [Google Scholar]
- Schreiber E., Matthias P., Müller M. M., Schaffner W. Rapid detection of octamer binding proteins with 'mini-extracts', prepared from a small number of cells. Nucleic Acids Res. 1989 Aug 11;17(15):6419–6419. doi: 10.1093/nar/17.15.6419. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vallet J. L., Bazer F. W., Fliss M. F., Thatcher W. W. Effect of ovine conceptus secretory proteins and purified ovine trophoblast protein-1 on interoestrous interval and plasma concentrations of prostaglandins F-2 alpha and E and of 13,14-dihydro-15-keto prostaglandin F-2 alpha in cyclic ewes. J Reprod Fertil. 1988 Nov;84(2):493–504. doi: 10.1530/jrf.0.0840493. [DOI] [PubMed] [Google Scholar]
- Visvader J. E., Elefanty A. G., Strasser A., Adams J. M. GATA-1 but not SCL induces megakaryocytic differentiation in an early myeloid line. EMBO J. 1992 Dec;11(12):4557–4564. doi: 10.1002/j.1460-2075.1992.tb05557.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wakiya K., Begue A., Stehelin D., Shibuya M. A cAMP response element and an Ets motif are involved in the transcriptional regulation of flt-1 tyrosine kinase (vascular endothelial growth factor receptor 1) gene. J Biol Chem. 1996 Nov 29;271(48):30823–30828. doi: 10.1074/jbc.271.48.30823. [DOI] [PubMed] [Google Scholar]