Abstract
Yeast phosphofructokinase is an oligomeric enzyme whose detectable activity in vitro depends on its hetero-octameric structure. Here we provide data demonstrating that an alanine residue at positions 874 (for the PFK1-encoded alpha-subunit) or 868 (for the PFK2-encoded beta-subunit) is crucial to achieve this structure. Thus subunits carrying substitutions by either aspartate or lysine of this residue cause a lack of phosphofructokinase activity in vitro and signals of the subunits are poorly detectable in Western blots. Size-exclusion HPLC in conjunction with ELISA detection of the enzyme protein confirmed that no functional octamer is produced in such mutants. Our data suggest that the mutant subunits, not being assembled, tend to aggregate and subsequently become degraded. Substitution of the alanine by valine in either subunit leads to a reduction in specific activities, as expected from a conservative exchange. The kinetic data of the latter mutant revealed a higher affinity to the substrate fructose 6-phosphate, a lower extent of ATP inhibition and a lower degree of activation by fructose 2,6-bisphosphate. In addition, the affinity of mutants carrying a valine instead of an alanine in either the alpha- or the beta-subunit to fructose 2, 6-bisphosphate was increased. As no X-ray data on eukaryotic phosphofructokinases are available yet, our data provide the first evidence that a non-charge amino acid at position 874 or 868 is essential for the formation of the functional oligomer. This conclusion is substantiated by comparison with the structure of the well-known prokaryotic enzyme.
Full Text
The Full Text of this article is available as a PDF (266.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Arvanitidis A., Heinisch J. J. Studies on the function of yeast phosphofructokinase subunits by in vitro mutagenesis. J Biol Chem. 1994 Mar 25;269(12):8911–8918. [PubMed] [Google Scholar]
- Barnett J. A. The utilization of sugars by yeasts. Adv Carbohydr Chem Biochem. 1976;32:125–234. doi: 10.1016/s0065-2318(08)60337-6. [DOI] [PubMed] [Google Scholar]
- Boles E., Miosga T. A rapid and highly efficient method for PCR-based site-directed mutagenesis using only one new primer. Curr Genet. 1995 Jul;28(2):197–198. doi: 10.1007/BF00315788. [DOI] [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
- Bär J., Schellenberger W., Kopperschläger G. Purification and characterization of phosphofructokinase from the yeast Kluyveromyces lactis. Yeast. 1997 Nov;13(14):1309–1317. doi: 10.1002/(SICI)1097-0061(199711)13:14<1309::AID-YEA181>3.0.CO;2-#. [DOI] [PubMed] [Google Scholar]
- Ciriacy M., Breitenbach I. Physiological effects of seven different blocks in glycolysis in Saccharomyces cerevisiae. J Bacteriol. 1979 Jul;139(1):152–160. doi: 10.1128/jb.139.1.152-160.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Clifton D., Fraenkel D. G. Mutant studies of yeast phosphofructokinase. Biochemistry. 1982 Apr 13;21(8):1935–1942. doi: 10.1021/bi00537a037. [DOI] [PubMed] [Google Scholar]
- Clifton D., Weinstock S. B., Fraenkel D. G. Glycolysis mutants in Saccharomyces cerevisiae. Genetics. 1978 Jan;88(1):1–11. doi: 10.1093/genetics/88.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Diezal W., Böhme H. J., Nissler K., Freyer R., Heilmann W., Kopperschläger G., Hofmann E. A new jpurification procedure for yeast phosphofructokinase minimizing proteolytic degradation. Eur J Biochem. 1973 Oct 18;38(3):479–488. doi: 10.1111/j.1432-1033.1973.tb03083.x. [DOI] [PubMed] [Google Scholar]
- Dohmen R. J., Strasser A. W., Höner C. B., Hollenberg C. P. An efficient transformation procedure enabling long-term storage of competent cells of various yeast genera. Yeast. 1991 Oct;7(7):691–692. doi: 10.1002/yea.320070704. [DOI] [PubMed] [Google Scholar]
- Evans P. R., Hudson P. J. Structure and control of phosphofructokinase from Bacillus stearothermophilus. Nature. 1979 Jun 7;279(5713):500–504. doi: 10.1038/279500a0. [DOI] [PubMed] [Google Scholar]
- Gietz R. D., Sugino A. New yeast-Escherichia coli shuttle vectors constructed with in vitro mutagenized yeast genes lacking six-base pair restriction sites. Gene. 1988 Dec 30;74(2):527–534. doi: 10.1016/0378-1119(88)90185-0. [DOI] [PubMed] [Google Scholar]
- Heinisch J. J., Boles E., Timpel C. A yeast phosphofructokinase insensitive to the allosteric activator fructose 2,6-bisphosphate. Glycolysis/metabolic regulation/allosteric control. J Biol Chem. 1996 Jul 5;271(27):15928–15933. doi: 10.1074/jbc.271.27.15928. [DOI] [PubMed] [Google Scholar]
- Heinisch J. Construction and physiological characterization of mutants disrupted in the phosphofructokinase genes of Saccharomyces cerevisiae. Curr Genet. 1986;11(3):227–234. doi: 10.1007/BF00420611. [DOI] [PubMed] [Google Scholar]
- Heinisch J. Isolation and characterization of the two structural genes coding for phosphofructokinase in yeast. Mol Gen Genet. 1986 Jan;202(1):75–82. doi: 10.1007/BF00330520. [DOI] [PubMed] [Google Scholar]
- Heinisch J., Kirchrath L., Liesen T., Vogelsang K., Hollenberg C. P. Molecular genetics of phosphofructokinase in the yeast Kluyveromyces lactis. Mol Microbiol. 1993 May;8(3):559–570. doi: 10.1111/j.1365-2958.1993.tb01600.x. [DOI] [PubMed] [Google Scholar]
- Heinisch J., Ritzel R. G., von Borstel R. C., Aguilera A., Rodicio R., Zimmermann F. K. The phosphofructokinase genes of yeast evolved from two duplication events. Gene. 1989 May 30;78(2):309–321. doi: 10.1016/0378-1119(89)90233-3. [DOI] [PubMed] [Google Scholar]
- Heinisch J., Vogelsang K., Hollenberg C. P. Transcriptional control of yeast phosphofructokinase gene expression. FEBS Lett. 1991 Sep 2;289(1):77–82. doi: 10.1016/0014-5793(91)80912-m. [DOI] [PubMed] [Google Scholar]
- Huang H. K., Yoon H., Hannig E. M., Donahue T. F. GTP hydrolysis controls stringent selection of the AUG start codon during translation initiation in Saccharomyces cerevisiae. Genes Dev. 1997 Sep 15;11(18):2396–2413. doi: 10.1101/gad.11.18.2396. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Klinder A., Kirchberger J., Edelmann A., Kopperschläger G. Assembly of phosphofructokinase-1 from Saccharomyces cerevisiae in extracts of single-deletion mutants. Yeast. 1998 Mar 15;14(4):323–334. doi: 10.1002/(SICI)1097-0061(19980315)14:4<323::AID-YEA223>3.0.CO;2-W. [DOI] [PubMed] [Google Scholar]
- Kopperschläger G., Bär J., Nissler K., Hofmann E. Physicochemical parameters and subunit composition of yeast phosphofructokinase. Eur J Biochem. 1977 Dec 1;81(2):317–325. doi: 10.1111/j.1432-1033.1977.tb11954.x. [DOI] [PubMed] [Google Scholar]
- Kopperschläger G., Bär J., Stellwagen E. Limited proteolysis of yeast phosphofructokinase. Sequence locations of cleavage sites created by the actions of different proteinases. Eur J Biochem. 1993 Oct 15;217(2):527–533. doi: 10.1111/j.1432-1033.1993.tb18273.x. [DOI] [PubMed] [Google Scholar]
- Lobo Z., Maitra P. K. Genetic evidence for distinct catalytic and regulatory subunits in yeast phosphofructokinase. FEBS Lett. 1982 Mar 8;139(1):93–96. doi: 10.1016/0014-5793(82)80494-8. [DOI] [PubMed] [Google Scholar]
- Nissler K., Hofmann E., Stel'maschchuk V., Orlova E., Kiselev N. An electron microscopy study of the quarternary structure of yeast phosphofructokinase. Biomed Biochim Acta. 1985;44(2):251–259. [PubMed] [Google Scholar]
- Obmolova G., Kopperschläger G., Heinisch J., Rypniewski W. R. Crystallization and preliminary X-ray analysis of the 12S form of phosphofructokinase from Saccharomyces cerevisiae. Acta Crystallogr D Biol Crystallogr. 1998 Jan 1;54(Pt 1):96–98. doi: 10.1107/s0907444997007555. [DOI] [PubMed] [Google Scholar]
- Otto A., Przybylski F., Nissler K., Schellenberger W., Hofmann E. Kinetic effects of fructose-1,6-bisphosphate on yeast phosphofructokinase. Biomed Biochim Acta. 1986;45(7):865–875. [PubMed] [Google Scholar]
- Piard K., Baldacci G., Tratner I. Single point mutations located outside the inter-monomer domains abolish trimerization of Schizosaccharomyces pombe PCNA. Nucleic Acids Res. 1998 Jun 1;26(11):2598–2605. doi: 10.1093/nar/26.11.2598. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Plietz P., Damaschun G., Kopperschläger G., Müller J. J. Small-angle x-ray scattering studies on the quaternary structure of phosphofructokinase from baker's yeast. FEBS Lett. 1978 Jul 15;91(2):230–232. doi: 10.1016/0014-5793(78)81179-x. [DOI] [PubMed] [Google Scholar]
- Rypniewski W. R., Evans P. R. Crystal structure of unliganded phosphofructokinase from Escherichia coli. J Mol Biol. 1989 Jun 20;207(4):805–821. doi: 10.1016/0022-2836(89)90246-5. [DOI] [PubMed] [Google Scholar]
- Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Uyeda K. Phosphofructokinase. Adv Enzymol Relat Areas Mol Biol. 1979;48:193–244. doi: 10.1002/9780470122938.ch4. [DOI] [PubMed] [Google Scholar]
- Vieira J., Messing J. New pUC-derived cloning vectors with different selectable markers and DNA replication origins. Gene. 1991 Apr;100:189–194. doi: 10.1016/0378-1119(91)90365-i. [DOI] [PubMed] [Google Scholar]
- Yanisch-Perron C., Vieira J., Messing J. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene. 1985;33(1):103–119. doi: 10.1016/0378-1119(85)90120-9. [DOI] [PubMed] [Google Scholar]
- Yoon H., Donahue T. F. Control of translation initiation in Saccharomyces cerevisiae. Mol Microbiol. 1992 Jun;6(11):1413–1419. doi: 10.1111/j.1365-2958.1992.tb00861.x. [DOI] [PubMed] [Google Scholar]
- Zimmermann F. K., Scheel I. Mutants of Saccharomyces cerevisiae resistant to carbon catabolite repression. Mol Gen Genet. 1977 Jul 7;154(1):75–82. doi: 10.1007/BF00265579. [DOI] [PubMed] [Google Scholar]