Abstract
The kinetic theory of the substrate reaction during modification of enzyme activity has been applied to a study of the dephosphorylation of phosphorylase a by protein phosphatase-1 (ppase-1). On the basis of the kinetic equation of the substrate reaction in the presence of ppase-1, all the inactivation rate constants for the free enzyme and the enzyme-substrate(s) complexes have been determined. Binding of the allosteric substrate, glucose 1-phosphate, to one subunit of phosphorylase a protects completely against ppase-1 action on either the same subunit or the adjacent subunit, whereas binding of the non-allosteric substrate, glycogen, to one subunit protects this subunit partially, but has no effect on the modification on the neighbouring subunit. Analysis of the data suggests that the allosteric behaviour of phosphorylase a can be interpreted in terms of a modified concerted model. The present method also provides a novel approach for studying dephosphorylation reactions. Since the experimental conditions used resemble more closely the in vivo situation where the substrate is constantly being turned over while the enzyme is being modified, this new method would be particularly useful when the regulatory mechanism of the reversible phosphorylation reaction toward certain enzymes is being assessed.
Full Text
The Full Text of this article is available as a PDF (243.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bailey J. M., Whelan W. J. The roles of glucose and AMP in regulating the conversion of phosphorylase a into phosphorylase b. Biochem Biophys Res Commun. 1972 Jan 14;46(1):191–197. doi: 10.1016/0006-291x(72)90649-3. [DOI] [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
- Brautigan D. L., Shriner C. L. Methods to distinguish various types of protein phosphatase activity. Methods Enzymol. 1988;159:339–346. doi: 10.1016/0076-6879(88)59034-1. [DOI] [PubMed] [Google Scholar]
- Busby S. J., Radda G. K. Regulation of the glycogen phosphorylase system--from physical measurements to biological speculations. Curr Top Cell Regul. 1976;10:89–160. doi: 10.1016/b978-0-12-152810-2.50010-3. [DOI] [PubMed] [Google Scholar]
- Cheng Q., Wang Z. X., Killilea S. D. A continuous spectrophotometric assay for protein phosphatases. Anal Biochem. 1995 Mar 20;226(1):68–73. doi: 10.1006/abio.1995.1192. [DOI] [PubMed] [Google Scholar]
- Cohen P., Duewer T., Fischer E. H. Phosphorylase from dogfish skeletal muscle. Purification and a comparison of its physical properties to those of rabbit muscle phosphorylase. Biochemistry. 1971 Jul 6;10(14):2683–2694. doi: 10.1021/bi00790a005. [DOI] [PubMed] [Google Scholar]
- Cohen P. The structure and regulation of protein phosphatases. Annu Rev Biochem. 1989;58:453–508. doi: 10.1146/annurev.bi.58.070189.002321. [DOI] [PubMed] [Google Scholar]
- Cohen P. The subunit structure of rabbit-skeletal-muscle phosphorylase kinase, and the molecular basis of its activation reactions. Eur J Biochem. 1973 Apr 2;34(1):1–14. doi: 10.1111/j.1432-1033.1973.tb02721.x. [DOI] [PubMed] [Google Scholar]
- Dickey-Dunkirk S., Mardaus M. C., Killilea S. D. Identification and partial characterization of bovine heart cytosolic phosphorylase phosphatases. Arch Biochem Biophys. 1985 Aug 15;241(1):232–242. doi: 10.1016/0003-9861(85)90379-0. [DOI] [PubMed] [Google Scholar]
- Engers H. D., Bridger W. A., Madsen N. B. Kinetic mechanism of phosphorylase a. II. Isotope exchange studies at equilibrium. Can J Biochem. 1970 Jul;48(7):755–758. doi: 10.1139/o70-118. [DOI] [PubMed] [Google Scholar]
- Engers H. D., Shechosky S., Madsen N. B. Kinetic mechanism of phosphorylase a. I. Initial velocity studies. Can J Biochem. 1970 Jul;48(7):746–754. doi: 10.1139/o70-117. [DOI] [PubMed] [Google Scholar]
- Fletterick R. J., Madsen N. B. The structures and related functions of phosphorylase a. Annu Rev Biochem. 1980;49:31–61. doi: 10.1146/annurev.bi.49.070180.000335. [DOI] [PubMed] [Google Scholar]
- Gold A. M., Johnson R. M., Tseng J. K. Kinetic mechanism of rabbit muscle glycogen phosphorylase a. J Biol Chem. 1970 May 25;245(10):2564–2572. [PubMed] [Google Scholar]
- Holmes P. A., Mansour T. E. Glucose as a regulator of glycogen phosphorylase in rat diaphragm. II. Effect of glucose and related compounds on phosphorylase phosphatase. Biochim Biophys Acta. 1968 Mar 11;156(2):275–284. doi: 10.1016/0304-4165(68)90256-0. [DOI] [PubMed] [Google Scholar]
- Hubbard M. J., Cohen P. Regulation of protein phosphatase-1G from rabbit skeletal muscle. 2. Catalytic subunit translocation is a mechanism for reversible inhibition of activity toward glycogen-bound substrates. Eur J Biochem. 1989 Dec 22;186(3):711–716. doi: 10.1111/j.1432-1033.1989.tb15264.x. [DOI] [PubMed] [Google Scholar]
- Ingebritsen T. S., Cohen P. Protein phosphatases: properties and role in cellular regulation. Science. 1983 Jul 22;221(4608):331–338. doi: 10.1126/science.6306765. [DOI] [PubMed] [Google Scholar]
- Killilea S. D., Brandt H., Lee E. Y., Whelan W. J. Evidence for the coordinate control of activity of liver glycogen synthase and phosphorylase by a single protein phosphatase. J Biol Chem. 1976 Apr 25;251(8):2363–2368. [PubMed] [Google Scholar]
- Klinov S. V., Kurganov B. I. Kinetic mechanism of activation of muscle glycogen phosphorylase b by adenosine 5'-monophosphate. Arch Biochem Biophys. 1994 Jul;312(1):14–21. doi: 10.1006/abbi.1994.1274. [DOI] [PubMed] [Google Scholar]
- Koshland D. E., Jr, Némethy G., Filmer D. Comparison of experimental binding data and theoretical models in proteins containing subunits. Biochemistry. 1966 Jan;5(1):365–385. doi: 10.1021/bi00865a047. [DOI] [PubMed] [Google Scholar]
- MONOD J., WYMAN J., CHANGEUX J. P. ON THE NATURE OF ALLOSTERIC TRANSITIONS: A PLAUSIBLE MODEL. J Mol Biol. 1965 May;12:88–118. doi: 10.1016/s0022-2836(65)80285-6. [DOI] [PubMed] [Google Scholar]
- Madsen N. B., Avramovic-Zikic O., Lue P. F., Honikel K. O. Studies on allosteric phenomena in glycogen phosphorylase b. Mol Cell Biochem. 1976 Mar 26;11(1):35–50. doi: 10.1007/BF01792832. [DOI] [PubMed] [Google Scholar]
- Martensen T. M., Brotherton J. E., Graves D. J. Kinetic studies of the activation of muscle phosphorylase phosphatase. J Biol Chem. 1973 Dec 25;248(24):8329–8336. [PubMed] [Google Scholar]
- Martensen T. M., Brotherton J. E., Graves D. J. Kinetic studies of the inhibition of muscle phosphorylase phosphatase. J Biol Chem. 1973 Dec 25;248(24):8323–8328. [PubMed] [Google Scholar]
- SUTHERLAND E. W., WOSILAIT W. D. The relationship of epinephrine and glucagon to liver phosphorylase. I. Liver phosphorylase; preparation and properties. J Biol Chem. 1956 Jan;218(1):459–468. [PubMed] [Google Scholar]
- Seery V. L., Fischer E. H., Teller D. C. A reinvestigation of the molecular weight of glycogen phosphorylase. Biochemistry. 1967 Oct;6(10):3315–3327. doi: 10.1021/bi00862a042. [DOI] [PubMed] [Google Scholar]
- Sergienko E. A., Srivastava D. K. A continuous spectrophotometric method for the determination of glycogen phosphorylase-catalyzed reaction in the direction of glycogen synthesis. Anal Biochem. 1994 Sep;221(2):348–355. doi: 10.1006/abio.1994.1424. [DOI] [PubMed] [Google Scholar]
- Sprang S. R., Acharya K. R., Goldsmith E. J., Stuart D. I., Varvill K., Fletterick R. J., Madsen N. B., Johnson L. N. Structural changes in glycogen phosphorylase induced by phosphorylation. Nature. 1988 Nov 17;336(6196):215–221. doi: 10.1038/336215a0. [DOI] [PubMed] [Google Scholar]
- Strålfors P., Hiraga A., Cohen P. The protein phosphatases involved in cellular regulation. Purification and characterisation of the glycogen-bound form of protein phosphatase-1 from rabbit skeletal muscle. Eur J Biochem. 1985 Jun 3;149(2):295–303. doi: 10.1111/j.1432-1033.1985.tb08926.x. [DOI] [PubMed] [Google Scholar]
- Tian W. X., Tsou C. L. Determination of the rate constant of enzyme modification by measuring the substrate reaction in the presence of the modifier. Biochemistry. 1982 Mar 2;21(5):1028–1032. doi: 10.1021/bi00534a031. [DOI] [PubMed] [Google Scholar]
- Varsányi M., Bot G. Effect of conformational changes on the enzymatic inactivation of pig and rabbit skeletal muscle phosphorylase-a. Acta Biochim Biophys Acad Sci Hung. 1973;8(1):23–31. [PubMed] [Google Scholar]
- Wang Z. X. A novel method for determining kinetic parameters of dissociating enzyme systems. Anal Biochem. 1998 Nov 1;264(1):8–21. doi: 10.1006/abio.1998.2818. [DOI] [PubMed] [Google Scholar]
- Wang Z. X., Cheng Q., Killilea S. D. A continuous spectrophotometric assay for phosphorylase kinase. Anal Biochem. 1995 Sep 1;230(1):55–61. doi: 10.1006/abio.1995.1437. [DOI] [PubMed] [Google Scholar]
- Wang Z. X., Pan X. M. Kinetic differentiation between ligand-induced and pre-existent asymmetric models. FEBS Lett. 1996 Jun 10;388(1):73–75. doi: 10.1016/0014-5793(96)00498-x. [DOI] [PubMed] [Google Scholar]
- Wang Z. X., Srivastava D. K. A graphical method for determining the number of essential sites in enzymes with multiple binding sites for a ligand. Anal Biochem. 1994 Jan;216(1):15–26. doi: 10.1006/abio.1994.1002. [DOI] [PubMed] [Google Scholar]
- Wang Z. X. Two theoretical problems concerning the irreversible modification kinetics of enzyme activity. J Theor Biol. 1990 Feb 22;142(4):551–563. doi: 10.1016/s0022-5193(05)80108-0. [DOI] [PubMed] [Google Scholar]
- Wang Z. X., Wang H. R., Zhou H. M. Kinetics of inactivation of aminoacylase by 2-chloromercuri-4-nitrophenol: a new type of complexing inhibitor. Biochemistry. 1995 May 23;34(20):6863–6868. doi: 10.1021/bi00020a033. [DOI] [PubMed] [Google Scholar]
- Wang Z. X., Wang H. R., Zhou H. M. Kinetics of inactivation of aminoacylase by 2-chloromercuri-4-nitrophenol: a new type of complexing inhibitor. Biochemistry. 1995 May 23;34(20):6863–6868. doi: 10.1021/bi00020a033. [DOI] [PubMed] [Google Scholar]
- Webb M. R. A continuous spectrophotometric assay for inorganic phosphate and for measuring phosphate release kinetics in biological systems. Proc Natl Acad Sci U S A. 1992 Jun 1;89(11):4884–4887. doi: 10.1073/pnas.89.11.4884. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhang A. J., Bai G., Deans-Zirattu S., Browner M. F., Lee E. Y. Expression of the catalytic subunit of phosphorylase phosphatase (protein phosphatase-1) in Escherichia coli. J Biol Chem. 1992 Jan 25;267(3):1484–1490. [PubMed] [Google Scholar]