Abstract
STAT3 (signal transducer and activator of transcription 3) is a latent transcription factor that is activated by tyrosine phosphorylation (Tyr-705) in cells stimulated with cytokines or growth factors. Recent studies suggest that one or more cytoplasmic serine kinases also phosphorylate STAT3 and are necessary for maximal gene activation. Here we demonstrate, with a site-specific antibody, that STAT3 is phosphorylated on Ser-727 in human neutrophils stimulated with chemotactic factors (N-formyl-methionyl-leucyl-phenylalanine and complement C5a), cytokines [granulocyte/macrophage colony-stimulating factor (GM-CSF) and granulocyte colony-stimulating factor (G-CSF)], or a protein kinase C activator (PMA). (2-Amino-3'-methoxyphenyl)oxanaphthalen-4-one (PD 98059), an inhibitor of extracellular signal-regulated protein kinase (ERK) activation, blocked the serine phosphorylation of STAT3 induced by chemotactic factors or PMA. The drug was less effective on cytokines: it virtually abolished the response to GM-CSF that occurred 5 min after stimulation but only partly decreased those at 15-30 min and did not appreciably alter responses to G-CSF regardless of incubation time. 1-(5-Isoquinolinylsulphonyl)-2-methylpiperazine dihydrochloride (H7), an inhibitor of a putative STAT3 serine kinase, and 4-(4-fluorophenyl)-2-(4-methylsulphinylphenyl)-5-(4-pyridyl) 1H-imidazole (SB 203580), an inhibitor of p38 mitogen-activated protein (MAP) kinase, did not dampen any of these serine phosphorylation responses. We propose that neutrophils use both ERK-dependent and ERK-independent pathways to phosphorylate Ser-727 on STAT3. The former pathway is recruited by all ERK-activating stimuli, whereas the latter pathway uses an undefined serine kinase and is recruited selectively by cytokines.
Full Text
The Full Text of this article is available as a PDF (175.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Al-Shami A., Mahanna W., Naccache P. H. Granulocyte-macrophage colony-stimulating factor-activated signaling pathways in human neutrophils. Selective activation of Jak2, Stat3, and Stat5b. J Biol Chem. 1998 Jan 9;273(2):1058–1063. doi: 10.1074/jbc.273.2.1058. [DOI] [PubMed] [Google Scholar]
- Alessi D. R., Cuenda A., Cohen P., Dudley D. T., Saltiel A. R. PD 098059 is a specific inhibitor of the activation of mitogen-activated protein kinase kinase in vitro and in vivo. J Biol Chem. 1995 Nov 17;270(46):27489–27494. doi: 10.1074/jbc.270.46.27489. [DOI] [PubMed] [Google Scholar]
- Bhat G. J., Abraham S. T., Baker K. M. Angiotensin II interferes with interleukin 6-induced Stat3 signaling by a pathway involving mitogen-activated protein kinase kinase 1. J Biol Chem. 1996 Sep 13;271(37):22447–22452. doi: 10.1074/jbc.271.37.22447. [DOI] [PubMed] [Google Scholar]
- Bhat G. J., Thekkumkara T. J., Thomas W. G., Conrad K. M., Baker K. M. Angiotensin II stimulates sis-inducing factor-like DNA binding activity. Evidence that the AT1A receptor activates transcription factor-Stat91 and/or a related protein. J Biol Chem. 1994 Dec 16;269(50):31443–31449. [PubMed] [Google Scholar]
- Boulton T. G., Zhong Z., Wen Z., Darnell J. E., Jr, Stahl N., Yancopoulos G. D. STAT3 activation by cytokines utilizing gp130 and related transducers involves a secondary modification requiring an H7-sensitive kinase. Proc Natl Acad Sci U S A. 1995 Jul 18;92(15):6915–6919. doi: 10.1073/pnas.92.15.6915. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bovolenta C., Gasperini S., Cassatella M. A. Granulocyte colony-stimulating factor induces the binding of STAT1 and STAT3 to the IFNgamma response region within the promoter of the Fc(gamma)RI/CD64 gene in human neutrophils. FEBS Lett. 1996 May 20;386(2-3):239–242. doi: 10.1016/0014-5793(96)00453-x. [DOI] [PubMed] [Google Scholar]
- Brizzi M. F., Aronica M. G., Rosso A., Bagnara G. P., Yarden Y., Pegoraro L. Granulocyte-macrophage colony-stimulating factor stimulates JAK2 signaling pathway and rapidly activates p93fes, STAT1 p91, and STAT3 p92 in polymorphonuclear leukocytes. J Biol Chem. 1996 Feb 16;271(7):3562–3567. doi: 10.1074/jbc.271.7.3562. [DOI] [PubMed] [Google Scholar]
- Cassatella M. A. The production of cytokines by polymorphonuclear neutrophils. Immunol Today. 1995 Jan;16(1):21–26. doi: 10.1016/0167-5699(95)80066-2. [DOI] [PubMed] [Google Scholar]
- Ceresa B. P., Pessin J. E. Insulin stimulates the serine phosphorylation of the signal transducer and activator of transcription (STAT3) isoform. J Biol Chem. 1996 May 24;271(21):12121–12124. doi: 10.1074/jbc.271.21.12121. [DOI] [PubMed] [Google Scholar]
- Chung J., Uchida E., Grammer T. C., Blenis J. STAT3 serine phosphorylation by ERK-dependent and -independent pathways negatively modulates its tyrosine phosphorylation. Mol Cell Biol. 1997 Nov;17(11):6508–6516. doi: 10.1128/mcb.17.11.6508. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Coffer P. J., Geijsen N., M'rabet L., Schweizer R. C., Maikoe T., Raaijmakers J. A., Lammers J. W., Koenderman L. Comparison of the roles of mitogen-activated protein kinase kinase and phosphatidylinositol 3-kinase signal transduction in neutrophil effector function. Biochem J. 1998 Jan 1;329(Pt 1):121–130. doi: 10.1042/bj3290121. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Colotta F., Wang J. M., Polentarutti N., Mantovani A. Expression of c-fos protooncogene in normal human peripheral blood granulocytes. J Exp Med. 1987 Apr 1;165(4):1224–1229. doi: 10.1084/jem.165.4.1224. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Downey G. P., Butler J. R., Tapper H., Fialkow L., Saltiel A. R., Rubin B. B., Grinstein S. Importance of MEK in neutrophil microbicidal responsiveness. J Immunol. 1998 Jan 1;160(1):434–443. [PubMed] [Google Scholar]
- Frank D. A., Mahajan S., Ritz J. B lymphocytes from patients with chronic lymphocytic leukemia contain signal transducer and activator of transcription (STAT) 1 and STAT3 constitutively phosphorylated on serine residues. J Clin Invest. 1997 Dec 15;100(12):3140–3148. doi: 10.1172/JCI119869. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gerard C., Gerard N. P. The pro-inflammatory seven-transmembrane segment receptors of the leukocyte. Curr Opin Immunol. 1994 Feb;6(1):140–145. doi: 10.1016/0952-7915(94)90045-0. [DOI] [PubMed] [Google Scholar]
- Gotoh A., Takahira H., Mantel C., Litz-Jackson S., Boswell H. S., Broxmeyer H. E. Steel factor induces serine phosphorylation of Stat3 in human growth factor-dependent myeloid cell lines. Blood. 1996 Jul 1;88(1):138–145. [PubMed] [Google Scholar]
- Grinstein S., Furuya W. Chemoattractant-induced tyrosine phosphorylation and activation of microtubule-associated protein kinase in human neutrophils. J Biol Chem. 1992 Sep 5;267(25):18122–18125. [PubMed] [Google Scholar]
- Hsiao K. M., Chou S. Y., Shih S. J., Ferrell J. E., Jr Evidence that inactive p42 mitogen-activated protein kinase and inactive Rsk exist as a heterodimer in vivo. Proc Natl Acad Sci U S A. 1994 Jun 7;91(12):5480–5484. doi: 10.1073/pnas.91.12.5480. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Itami M., Kuroki T., Nose K. Induction of c-fos proto-oncogene by a chemotactic peptide in human peripheral granulocytes. FEBS Lett. 1987 Oct 5;222(2):289–292. doi: 10.1016/0014-5793(87)80388-5. [DOI] [PubMed] [Google Scholar]
- Karin M. The regulation of AP-1 activity by mitogen-activated protein kinases. J Biol Chem. 1995 Jul 14;270(28):16483–16486. doi: 10.1074/jbc.270.28.16483. [DOI] [PubMed] [Google Scholar]
- Kuroki M., O'Flaherty J. T. Differential effects of a mitogen-activated protein kinase kinase inhibitor on human neutrophil responses to chemotactic factors. Biochem Biophys Res Commun. 1997 Mar 17;232(2):474–477. doi: 10.1006/bbrc.1997.6296. [DOI] [PubMed] [Google Scholar]
- Leaman D. W., Leung S., Li X., Stark G. R. Regulation of STAT-dependent pathways by growth factors and cytokines. FASEB J. 1996 Dec;10(14):1578–1588. [PubMed] [Google Scholar]
- Lütticken C., Coffer P., Yuan J., Schwartz C., Caldenhoven E., Schindler C., Kruijer W., Heinrich P. C., Horn F. Interleukin-6-induced serine phosphorylation of transcription factor APRF: evidence for a role in interleukin-6 target gene induction. FEBS Lett. 1995 Feb 27;360(2):137–143. doi: 10.1016/0014-5793(95)00076-l. [DOI] [PubMed] [Google Scholar]
- Marrero M. B., Schieffer B., Paxton W. G., Heerdt L., Berk B. C., Delafontaine P., Bernstein K. E. Direct stimulation of Jak/STAT pathway by the angiotensin II AT1 receptor. Nature. 1995 May 18;375(6528):247–250. doi: 10.1038/375247a0. [DOI] [PubMed] [Google Scholar]
- Miyakawa Y., Oda A., Druker B. J., Miyazaki H., Handa M., Ohashi H., Ikeda Y. Thrombopoietin induces tyrosine phosphorylation of Stat3 and Stat5 in human blood platelets. Blood. 1996 Jan 15;87(2):439–446. [PubMed] [Google Scholar]
- Ng J., Cantrell D. STAT3 is a serine kinase target in T lymphocytes. Interleukin 2 and T cell antigen receptor signals converge upon serine 727. J Biol Chem. 1997 Sep 26;272(39):24542–24549. doi: 10.1074/jbc.272.39.24542. [DOI] [PubMed] [Google Scholar]
- O'Flaherty J. T., Kuroki M., Nixon A. B., Wijkander J., Yee E., Lee S. L., Smitherman P. K., Wykle R. L., Daniel L. W. 5-Oxo-eicosanoids and hematopoietic cytokines cooperate in stimulating neutrophil function and the mitogen-activated protein kinase pathway. J Biol Chem. 1996 Jul 26;271(30):17821–17828. doi: 10.1074/jbc.271.30.17821. [DOI] [PubMed] [Google Scholar]
- Pellegrini S., Dusanter-Fourt I. The structure, regulation and function of the Janus kinases (JAKs) and the signal transducers and activators of transcription (STATs). Eur J Biochem. 1997 Sep 15;248(3):615–633. doi: 10.1111/j.1432-1033.1997.00615.x. [DOI] [PubMed] [Google Scholar]
- Pfeffer L. M., Mullersman J. E., Pfeffer S. R., Murti A., Shi W., Yang C. H. STAT3 as an adapter to couple phosphatidylinositol 3-kinase to the IFNAR1 chain of the type I interferon receptor. Science. 1997 May 30;276(5317):1418–1420. doi: 10.1126/science.276.5317.1418. [DOI] [PubMed] [Google Scholar]
- Rapoport A. P., Abboud C. N., DiPersio J. F. Granulocyte-macrophage colony-stimulating factor (GM-CSF) and granulocyte colony-stimulating factor (G-CSF): receptor biology, signal transduction, and neutrophil activation. Blood Rev. 1992 Mar;6(1):43–57. doi: 10.1016/0268-960x(92)90007-d. [DOI] [PubMed] [Google Scholar]
- Schindler C., Darnell J. E., Jr Transcriptional responses to polypeptide ligands: the JAK-STAT pathway. Annu Rev Biochem. 1995;64:621–651. doi: 10.1146/annurev.bi.64.070195.003201. [DOI] [PubMed] [Google Scholar]
- Stephens J. M., Lumpkin S. J., Fishman J. B. Activation of signal transducers and activators of transcription 1 and 3 by leukemia inhibitory factor, oncostatin-M, and interferon-gamma in adipocytes. J Biol Chem. 1998 Nov 20;273(47):31408–31416. doi: 10.1074/jbc.273.47.31408. [DOI] [PubMed] [Google Scholar]
- Thompson H. L., Marshall C. J., Saklatvala J. Characterization of two different forms of mitogen-activated protein kinase kinase induced in polymorphonuclear leukocytes following stimulation by N-formylmethionyl-leucyl-phenylalanine or granulocyte-macrophage colony-stimulating factor. J Biol Chem. 1994 Apr 1;269(13):9486–9492. [PubMed] [Google Scholar]
- Wen Z., Zhong Z., Darnell J. E., Jr Maximal activation of transcription by Stat1 and Stat3 requires both tyrosine and serine phosphorylation. Cell. 1995 Jul 28;82(2):241–250. doi: 10.1016/0092-8674(95)90311-9. [DOI] [PubMed] [Google Scholar]
- Wong M., Fish E. N. RANTES and MIP-1alpha activate stats in T cells. J Biol Chem. 1998 Jan 2;273(1):309–314. doi: 10.1074/jbc.273.1.309. [DOI] [PubMed] [Google Scholar]
- Zhang X., Blenis J., Li H. C., Schindler C., Chen-Kiang S. Requirement of serine phosphorylation for formation of STAT-promoter complexes. Science. 1995 Mar 31;267(5206):1990–1994. doi: 10.1126/science.7701321. [DOI] [PubMed] [Google Scholar]