Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1999 Aug 1;341(Pt 3):821–829.

Molecular and functional analysis of mouse decay accelerating factor (CD55).

C L Harris 1, N K Rushmere 1, B P Morgan 1
PMCID: PMC1220423  PMID: 10417349

Abstract

Molecular cloning of mouse decay accelerating factor (DAF; CD55) predicted two forms of the molecule, one transmembrane (TM) and the other glycosylphosphatidylinositol (GPI)-anchored; these are encoded by separate genes termed Daf-GPI and Daf-TM. In the present study several additional isoforms of mouse DAF, generated by alternative splicing from these genes, are described. Northern-blot analysis of RNA and reverse transcriptase-PCR from various tissues indicated that spleen and testis expressed high levels of DAF, which comprised several species. These species were cloned and sequence analysis revealed various novel forms in addition to those previously reported. Two novel forms were derived from the Daf-TM gene but the transmembrane sequence defined previously was replaced by a unique GPI-anchor addition sequence; one clone also had part of the serine/threonine/proline (STP) region deleted. A third clone, encoding a transmembrane protein, was also derived from this gene but the entire STP region was deleted. A fourth clone, derived from the Daf-GPI gene, contained a novel C-terminal sequence, suggestive of a secreted form of the protein. Two DAF cDNAs (TM and GPI-anchored) were stably expressed in Chinese hamster ovary cells. When these cells were attacked with mouse or rat complement and analysed for C3b deposition, DAF-transfected cells had greatly reduced C3b deposition compared with controls. Transfection with DAF also conferred protection from complement in a cell-lysis assay, and a soluble, recombinant form of mouse DAF inhibited complement in a haemolytic assay.

Full Text

The Full Text of this article is available as a PDF (208.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bergelson J. M., Chan M., Solomon K. R., St John N. F., Lin H., Finberg R. W. Decay-accelerating factor (CD55), a glycosylphosphatidylinositol-anchored complement regulatory protein, is a receptor for several echoviruses. Proc Natl Acad Sci U S A. 1994 Jun 21;91(13):6245–6248. doi: 10.1073/pnas.91.13.6245. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Caras I. W., Davitz M. A., Rhee L., Weddell G., Martin D. W., Jr, Nussenzweig V. Cloning of decay-accelerating factor suggests novel use of splicing to generate two proteins. Nature. 1987 Feb 5;325(6104):545–549. doi: 10.1038/325545a0. [DOI] [PubMed] [Google Scholar]
  3. Charreau B., Cassard A., Tesson L., Le Mauff B., Navenot J. M., Blanchard D., Lublin D., Soulillou J. P., Anegon I. Protection of rat endothelial cells from primate complement-mediated lysis by expression of human CD59 and/or decay-accelerating factor. Transplantation. 1994 Dec 15;58(11):1222–1229. [PubMed] [Google Scholar]
  4. Coyne K. E., Hall S. E., Thompson S., Arce M. A., Kinoshita T., Fujita T., Anstee D. J., Rosse W., Lublin D. M. Mapping of epitopes, glycosylation sites, and complement regulatory domains in human decay accelerating factor. J Immunol. 1992 Nov 1;149(9):2906–2913. [PubMed] [Google Scholar]
  5. Fukuoka Y., Yasui A., Okada N., Okada H. Molecular cloning of murine decay accelerating factor by immunoscreening. Int Immunol. 1996 Mar;8(3):379–385. doi: 10.1093/intimm/8.3.379. [DOI] [PubMed] [Google Scholar]
  6. Higgins P. J., Ko J. L., Lobell R., Sardonini C., Alessi M. K., Yeh C. G. A soluble chimeric complement inhibitory protein that possesses both decay-accelerating and factor I cofactor activities. J Immunol. 1997 Mar 15;158(6):2872–2881. [PubMed] [Google Scholar]
  7. Hinchliffe S. J., Spiller O. B., Rushmere N. K., Morgan B. P. Molecular cloning and functional characterization of the rat analogue of human decay-accelerating factor (CD55). J Immunol. 1998 Nov 15;161(10):5695–5703. [PubMed] [Google Scholar]
  8. Holers V. M., Kinoshita T., Molina H. The evolution of mouse and human complement C3-binding proteins: divergence of form but conservation of function. Immunol Today. 1992 Jun;13(6):231–236. doi: 10.1016/0167-5699(92)90160-9. [DOI] [PubMed] [Google Scholar]
  9. Hosokawa M., Nonaka M., Okada N., Nonaka M., Okada H. Molecular cloning of guinea pig membrane cofactor protein: preferential expression in testis. J Immunol. 1996 Dec 1;157(11):4946–4952. [PubMed] [Google Scholar]
  10. Kameyoshi Y., Matsushita M., Okada H. Murine membrane inhibitor of complement which accelerates decay of human C3 convertase. Immunology. 1989 Dec;68(4):439–444. [PMC free article] [PubMed] [Google Scholar]
  11. Karnauchow T. M., Tolson D. L., Harrison B. A., Altman E., Lublin D. M., Dimock K. The HeLa cell receptor for enterovirus 70 is decay-accelerating factor (CD55). J Virol. 1996 Aug;70(8):5143–5152. doi: 10.1128/jvi.70.8.5143-5152.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kim Y. U., Kinoshita T., Molina H., Hourcade D., Seya T., Wagner L. M., Holers V. M. Mouse complement regulatory protein Crry/p65 uses the specific mechanisms of both human decay-accelerating factor and membrane cofactor protein. J Exp Med. 1995 Jan 1;181(1):151–159. doi: 10.1084/jem.181.1.151. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kinoshita T., Lavoie S., Nussenzweig V. Regulatory proteins for the activated third and fourth components of complement (C3b and C4b) in mice. II. Identification and properties of complement receptor type 1 (CR1). J Immunol. 1985 Apr;134(4):2564–2570. [PubMed] [Google Scholar]
  14. Krych M., Clemenza L., Howdeshell D., Hauhart R., Hourcade D., Atkinson J. P. Analysis of the functional domains of complement receptor type 1 (C3b/C4b receptor; CD35) by substitution mutagenesis. J Biol Chem. 1994 May 6;269(18):13273–13278. [PubMed] [Google Scholar]
  15. Krych M., Hourcade D., Atkinson J. P. Sites within the complement C3b/C4b receptor important for the specificity of ligand binding. Proc Natl Acad Sci U S A. 1991 May 15;88(10):4353–4357. doi: 10.1073/pnas.88.10.4353. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kurita M., Yanagi Y., Hara T., Nagasawa S., Matsumoto M., Seya T. Human lymphocytes are more susceptible to measles virus than granulocytes, which is attributable to the phenotypic differences of their membrane cofactor protein (CD46). Immunol Lett. 1995 Dec;48(2):91–95. doi: 10.1016/0165-2478(95)02447-6. [DOI] [PubMed] [Google Scholar]
  17. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  18. Lublin D. M., Coyne K. E. Phospholipid-anchored and transmembrane versions of either decay-accelerating factor or membrane cofactor protein show equal efficiency in protection from complement-mediated cell damage. J Exp Med. 1991 Jul 1;174(1):35–44. doi: 10.1084/jem.174.1.35. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Lublin D. M., Liszewski M. K., Post T. W., Arce M. A., Le Beau M. M., Rebentisch M. B., Lemons L. S., Seya T., Atkinson J. P. Molecular cloning and chromosomal localization of human membrane cofactor protein (MCP). Evidence for inclusion in the multigene family of complement-regulatory proteins. J Exp Med. 1988 Jul 1;168(1):181–194. doi: 10.1084/jem.168.1.181. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Medof M. E., Lublin D. M., Holers V. M., Ayers D. J., Getty R. R., Leykam J. F., Atkinson J. P., Tykocinski M. L. Cloning and characterization of cDNAs encoding the complete sequence of decay-accelerating factor of human complement. Proc Natl Acad Sci U S A. 1987 Apr;84(7):2007–2011. doi: 10.1073/pnas.84.7.2007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Miwa T., Nonaka M., Okada N., Wakana S., Shiroishi T., Okada H. Molecular cloning of rat and mouse membrane cofactor protein (MCP, CD46): preferential expression in testis and close linkage between the mouse Mcp and Cr2 genes on distal chromosome 1. Immunogenetics. 1998 Nov-Dec;48(6):363–371. doi: 10.1007/s002510050447. [DOI] [PubMed] [Google Scholar]
  22. Molina H., Wong W., Kinoshita T., Brenner C., Foley S., Holers V. M. Distinct receptor and regulatory properties of recombinant mouse complement receptor 1 (CR1) and Crry, the two genetic homologues of human CR1. J Exp Med. 1992 Jan 1;175(1):121–129. doi: 10.1084/jem.175.1.121. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Moran P., Beasley H., Gorrell A., Martin E., Gribling P., Fuchs H., Gillett N., Burton L. E., Caras I. W. Human recombinant soluble decay accelerating factor inhibits complement activation in vitro and in vivo. J Immunol. 1992 Sep 1;149(5):1736–1743. [PubMed] [Google Scholar]
  24. Morgan B. P., Meri S. Membrane proteins that protect against complement lysis. Springer Semin Immunopathol. 1994;15(4):369–396. doi: 10.1007/BF01837366. [DOI] [PubMed] [Google Scholar]
  25. Naniche D., Varior-Krishnan G., Cervoni F., Wild T. F., Rossi B., Rabourdin-Combe C., Gerlier D. Human membrane cofactor protein (CD46) acts as a cellular receptor for measles virus. J Virol. 1993 Oct;67(10):6025–6032. doi: 10.1128/jvi.67.10.6025-6032.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Nonaka M., Miwa T., Okada N., Nonaka M., Okada H. Multiple isoforms of guinea pig decay-accelerating factor (DAF) generated by alternative splicing. J Immunol. 1995 Sep 15;155(6):3037–3048. [PubMed] [Google Scholar]
  27. Paul M. S., Aegerter M., O'Brien S. E., Kurtz C. B., Weis J. H. The murine complement receptor gene family. Analysis of mCRY gene products and their homology to human CR1. J Immunol. 1989 Jan 15;142(2):582–589. [PubMed] [Google Scholar]
  28. Post T. W., Arce M. A., Liszewski M. K., Thompson E. S., Atkinson J. P., Lublin D. M. Structure of the gene for human complement protein decay accelerating factor. J Immunol. 1990 Jan 15;144(2):740–744. [PubMed] [Google Scholar]
  29. Post T. W., Liszewski M. K., Adams E. M., Tedja I., Miller E. A., Atkinson J. P. Membrane cofactor protein of the complement system: alternative splicing of serine/threonine/proline-rich exons and cytoplasmic tails produces multiple isoforms that correlate with protein phenotype. J Exp Med. 1991 Jul 1;174(1):93–102. doi: 10.1084/jem.174.1.93. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Powell M. B., Marchbank K. J., Rushmere N. K., van den Berg C. W., Morgan B. P. Molecular cloning, chromosomal localization, expression, and functional characterization of the mouse analogue of human CD59. J Immunol. 1997 Feb 15;158(4):1692–1702. [PubMed] [Google Scholar]
  31. Russell S. M., Sparrow R. L., McKenzie I. F., Purcell D. F. Tissue-specific and allelic expression of the complement regulator CD46 is controlled by alternative splicing. Eur J Immunol. 1992 Jun;22(6):1513–1518. doi: 10.1002/eji.1830220625. [DOI] [PubMed] [Google Scholar]
  32. Sakurada C., Seno H., Dohi N., Takizawa H., Nonaka M., Okada N., Okada H. Molecular cloning of the rat complement regulatory protein, 5I2 antigen. Biochem Biophys Res Commun. 1994 Feb 15;198(3):819–826. doi: 10.1006/bbrc.1994.1117. [DOI] [PubMed] [Google Scholar]
  33. Shafren D. R., Bates R. C., Agrez M. V., Herd R. L., Burns G. F., Barry R. D. Coxsackieviruses B1, B3, and B5 use decay accelerating factor as a receptor for cell attachment. J Virol. 1995 Jun;69(6):3873–3877. doi: 10.1128/jvi.69.6.3873-3877.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Shenoy-Scaria A. M., Kwong J., Fujita T., Olszowy M. W., Shaw A. S., Lublin D. M. Signal transduction through decay-accelerating factor. Interaction of glycosyl-phosphatidylinositol anchor and protein tyrosine kinases p56lck and p59fyn 1. J Immunol. 1992 Dec 1;149(11):3535–3541. [PubMed] [Google Scholar]
  35. Song W. C., Deng C., Raszmann K., Moore R., Newbold R., McLachlan J. A., Negishi M. Mouse decay-accelerating factor: selective and tissue-specific induction by estrogen of the gene encoding the glycosylphosphatidylinositol-anchored form. J Immunol. 1996 Nov 1;157(9):4166–4172. [PubMed] [Google Scholar]
  36. Spicer A. P., Seldin M. F., Gendler S. J. Molecular cloning and chromosomal localization of the mouse decay-accelerating factor genes. Duplicated genes encode glycosylphosphatidylinositol-anchored and transmembrane forms. J Immunol. 1995 Sep 15;155(6):3079–3091. [PubMed] [Google Scholar]
  37. Spiller O. B., Harris C. L., Morgan B. P. Efficient generation of monoclonal antibodies against surface-expressed proteins by hyperexpression in rodent cells. J Immunol Methods. 1999 Apr 22;224(1-2):51–60. doi: 10.1016/s0022-1759(99)00008-3. [DOI] [PubMed] [Google Scholar]
  38. Sun X., Funk C. D., Deng C., Sahu A., Lambris J. D., Song W. C. Role of decay-accelerating factor in regulating complement activation on the erythrocyte surface as revealed by gene targeting. Proc Natl Acad Sci U S A. 1999 Jan 19;96(2):628–633. doi: 10.1073/pnas.96.2.628. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Takizawa H., Okada N., Okada H. Complement inhibitor of rat cell membrane resembling mouse Crry/p65. J Immunol. 1994 Mar 15;152(6):3032–3038. [PubMed] [Google Scholar]
  40. Tsujimura A., Shida K., Kitamura M., Nomura M., Takeda J., Tanaka H., Matsumoto M., Matsumiya K., Okuyama A., Nishimune Y. Molecular cloning of a murine homologue of membrane cofactor protein (CD46): preferential expression in testicular germ cells. Biochem J. 1998 Feb 15;330(Pt 1):163–168. doi: 10.1042/bj3300163. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Wang G., Nonaka M., He C., Okada N., Nakashima I., Okada H. Functional differences among multiple isoforms of guinea pig decay-accelerating factor. J Immunol. 1998 Mar 15;160(6):3014–3022. [PubMed] [Google Scholar]
  42. Wong W. W., Fearon D. T. p65: A C3b-binding protein on murine cells that shares antigenic determinants with the human C3b receptor (CR1) and is distinct from murine C3b receptor. J Immunol. 1985 Jun;134(6):4048–4056. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES