Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1999 Sep 15;342(Pt 3):691–696.

Iron-dependent regulation of transferrin receptor expression in Trypanosoma brucei.

B Fast 1, K Kremp 1, M Boshart 1, D Steverding 1
PMCID: PMC1220511  PMID: 10477281

Abstract

Transferrin is an essential growth factor for African trypanosomes. Here we show that expression of the trypanosomal transferrin receptor, which bears no structural similarity with mammalian transferrin receptors, is regulated by iron availability. Iron depletion of bloodstream forms of Trypanosoma brucei with the iron chelator deferoxamine resulted in a 3-fold up-regulation of the transferrin receptor and a 3-fold increase of the transferrin uptake rate. The abundance of expression site associated gene product 6 (ESAG6) mRNA, which encodes one of the two subunits of the trypanosome transferrin receptor, is regulated 5-fold by a post-transcriptional mechanism. In mammalian cells the stability of transferrin receptor mRNA is controlled by iron regulatory proteins (IRPs) binding to iron-responsive elements (IREs) in the 3'-untranslated region (UTR). Therefore, the role of a T. brucei cytoplasmic aconitase (TbACO) that is highly related to mammalian IRP-1 was investigated. Iron regulation of the transferrin receptor was found to be unaffected in Deltaaco::NEO/Deltaaco::HYG null mutants generated by targeted disruption of the TbACO gene. Thus, the mechanism of post-transcriptional transferrin receptor regulation in trypanosomes appears to be distinct from the IRE/IRP paradigm. The transferrin uptake rate was also increased when trypanosomes were transferred from medium supplemented with foetal bovine serum to medium supplemented with sera from other vertebrates. Due to varying binding affinities of the trypanosomal transferrin receptor for transferrins of different species, serum change can result in iron starvation. Thus, regulation of transferrin receptor expression may be a fast compensatory mechanism upon transmission of the parasite to a new host species.

Full Text

The Full Text of this article is available as a PDF (189.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baldwin G. S. Comparison of transferrin sequences from different species. Comp Biochem Physiol B. 1993 Sep;106(1):203–218. doi: 10.1016/0305-0491(93)90028-4. [DOI] [PubMed] [Google Scholar]
  2. Baltz T., Baltz D., Giroud C., Crockett J. Cultivation in a semi-defined medium of animal infective forms of Trypanosoma brucei, T. equiperdum, T. evansi, T. rhodesiense and T. gambiense. EMBO J. 1985 May;4(5):1273–1277. doi: 10.1002/j.1460-2075.1985.tb03772.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Binder R., Horowitz J. A., Basilion J. P., Koeller D. M., Klausner R. D., Harford J. B. Evidence that the pathway of transferrin receptor mRNA degradation involves an endonucleolytic cleavage within the 3' UTR and does not involve poly(A) tail shortening. EMBO J. 1994 Apr 15;13(8):1969–1980. doi: 10.1002/j.1460-2075.1994.tb06466.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bitter W., Gerrits H., Kieft R., Borst P. The role of transferrin-receptor variation in the host range of Trypanosoma brucei. Nature. 1998 Jan 29;391(6666):499–502. doi: 10.1038/35166. [DOI] [PubMed] [Google Scholar]
  5. Borst P. Discontinuous transcription and antigenic variation in trypanosomes. Annu Rev Biochem. 1986;55:701–732. doi: 10.1146/annurev.bi.55.070186.003413. [DOI] [PubMed] [Google Scholar]
  6. Boshart M., Weih F., Nichols M., Schütz G. The tissue-specific extinguisher locus TSE1 encodes a regulatory subunit of cAMP-dependent protein kinase. Cell. 1991 Sep 6;66(5):849–859. doi: 10.1016/0092-8674(91)90432-x. [DOI] [PubMed] [Google Scholar]
  7. Bridges K. R., Cudkowicz A. Effect of iron chelators on the transferrin receptor in K562 cells. J Biol Chem. 1984 Nov 10;259(21):12970–12977. [PubMed] [Google Scholar]
  8. Carruthers V. B., van der Ploeg L. H., Cross G. A. DNA-mediated transformation of bloodstream-form Trypanosoma brucei. Nucleic Acids Res. 1993 May 25;21(10):2537–2538. doi: 10.1093/nar/21.10.2537. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Casey J. L., Koeller D. M., Ramin V. C., Klausner R. D., Harford J. B. Iron regulation of transferrin receptor mRNA levels requires iron-responsive elements and a rapid turnover determinant in the 3' untranslated region of the mRNA. EMBO J. 1989 Dec 1;8(12):3693–3699. doi: 10.1002/j.1460-2075.1989.tb08544.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Chaudhri M., Steverding D., Kittelberger D., Tjia S., Overath P. Expression of a glycosylphosphatidylinositol-anchored Trypanosoma brucei transferrin-binding protein complex in insect cells. Proc Natl Acad Sci U S A. 1994 Jul 5;91(14):6443–6447. doi: 10.1073/pnas.91.14.6443. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Cross G. A. Cellular and genetic aspects of antigenic variation in trypanosomes. Annu Rev Immunol. 1990;8:83–110. doi: 10.1146/annurev.iy.08.040190.000503. [DOI] [PubMed] [Google Scholar]
  12. Cross G. A. Identification, purification and properties of clone-specific glycoprotein antigens constituting the surface coat of Trypanosoma brucei. Parasitology. 1975 Dec;71(3):393–417. doi: 10.1017/s003118200004717x. [DOI] [PubMed] [Google Scholar]
  13. Cully D. F., Ip H. S., Cross G. A. Coordinate transcription of variant surface glycoprotein genes and an expression site associated gene family in Trypanosoma brucei. Cell. 1985 Aug;42(1):173–182. doi: 10.1016/s0092-8674(85)80113-6. [DOI] [PubMed] [Google Scholar]
  14. Guo B., Phillips J. D., Yu Y., Leibold E. A. Iron regulates the intracellular degradation of iron regulatory protein 2 by the proteasome. J Biol Chem. 1995 Sep 15;270(37):21645–21651. doi: 10.1074/jbc.270.37.21645. [DOI] [PubMed] [Google Scholar]
  15. Haile D. J., Rouault T. A., Harford J. B., Kennedy M. C., Blondin G. A., Beinert H., Klausner R. D. Cellular regulation of the iron-responsive element binding protein: disassembly of the cubane iron-sulfur cluster results in high-affinity RNA binding. Proc Natl Acad Sci U S A. 1992 Dec 15;89(24):11735–11739. doi: 10.1073/pnas.89.24.11735. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hentze M. W., Kühn L. C. Molecular control of vertebrate iron metabolism: mRNA-based regulatory circuits operated by iron, nitric oxide, and oxidative stress. Proc Natl Acad Sci U S A. 1996 Aug 6;93(16):8175–8182. doi: 10.1073/pnas.93.16.8175. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hentze M. W. Translational regulation: versatile mechanisms for metabolic and developmental control. Curr Opin Cell Biol. 1995 Jun;7(3):393–398. doi: 10.1016/0955-0674(95)80095-6. [DOI] [PubMed] [Google Scholar]
  18. Hirumi H., Hirumi K. Continuous cultivation of Trypanosoma brucei blood stream forms in a medium containing a low concentration of serum protein without feeder cell layers. J Parasitol. 1989 Dec;75(6):985–989. [PubMed] [Google Scholar]
  19. Hirumi H., Hirumi K., Doyle J. J., Cross G. A. In vitro cloning of animal-infective bloodstream forms of Trypanosoma brucei. Parasitology. 1980 Apr;80(2):371–382. doi: 10.1017/s0031182000000822. [DOI] [PubMed] [Google Scholar]
  20. Horowitz J. A., Harford J. B. The secondary structure of the regulatory region of the transferrin receptor mRNA deduced by enzymatic cleavage. New Biol. 1992 Apr;4(4):330–338. [PubMed] [Google Scholar]
  21. Iwai K., Drake S. K., Wehr N. B., Weissman A. M., LaVaute T., Minato N., Klausner R. D., Levine R. L., Rouault T. A. Iron-dependent oxidation, ubiquitination, and degradation of iron regulatory protein 2: implications for degradation of oxidized proteins. Proc Natl Acad Sci U S A. 1998 Apr 28;95(9):4924–4928. doi: 10.1073/pnas.95.9.4924. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Johnson P. J., Kooter J. M., Borst P. Inactivation of transcription by UV irradiation of T. brucei provides evidence for a multicistronic transcription unit including a VSG gene. Cell. 1987 Oct 23;51(2):273–281. doi: 10.1016/0092-8674(87)90154-1. [DOI] [PubMed] [Google Scholar]
  23. Koeller D. M., Casey J. L., Hentze M. W., Gerhardt E. M., Chan L. N., Klausner R. D., Harford J. B. A cytosolic protein binds to structural elements within the iron regulatory region of the transferrin receptor mRNA. Proc Natl Acad Sci U S A. 1989 May;86(10):3574–3578. doi: 10.1073/pnas.86.10.3574. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Kooter J. M., van der Spek H. J., Wagter R., d'Oliveira C. E., van der Hoeven F., Johnson P. J., Borst P. The anatomy and transcription of a telomeric expression site for variant-specific surface antigens in T. brucei. Cell. 1987 Oct 23;51(2):261–272. doi: 10.1016/0092-8674(87)90153-x. [DOI] [PubMed] [Google Scholar]
  25. Ligtenberg M. J., Bitter W., Kieft R., Steverding D., Janssen H., Calafat J., Borst P. Reconstitution of a surface transferrin binding complex in insect form Trypanosoma brucei. EMBO J. 1994 Jun 1;13(11):2565–2573. doi: 10.1002/j.1460-2075.1994.tb06546.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Mattia E., Rao K., Shapiro D. S., Sussman H. H., Klausner R. D. Biosynthetic regulation of the human transferrin receptor by desferrioxamine in K562 cells. J Biol Chem. 1984 Mar 10;259(5):2689–2692. [PubMed] [Google Scholar]
  27. Müllner E. W., Neupert B., Kühn L. C. A specific mRNA binding factor regulates the iron-dependent stability of cytoplasmic transferrin receptor mRNA. Cell. 1989 Jul 28;58(2):373–382. doi: 10.1016/0092-8674(89)90851-9. [DOI] [PubMed] [Google Scholar]
  28. Pays E., Steinert M. Control of antigen gene expression in African trypanosomes. Annu Rev Genet. 1988;22:107–126. doi: 10.1146/annurev.ge.22.120188.000543. [DOI] [PubMed] [Google Scholar]
  29. Pays E., Tebabi P., Pays A., Coquelet H., Revelard P., Salmon D., Steinert M. The genes and transcripts of an antigen gene expression site from T. brucei. Cell. 1989 Jun 2;57(5):835–845. doi: 10.1016/0092-8674(89)90798-8. [DOI] [PubMed] [Google Scholar]
  30. Rouault T., Klausner R. Regulation of iron metabolism in eukaryotes. Curr Top Cell Regul. 1997;35:1–19. doi: 10.1016/s0070-2137(97)80001-5. [DOI] [PubMed] [Google Scholar]
  31. Salmon D., Geuskens M., Hanocq F., Hanocq-Quertier J., Nolan D., Ruben L., Pays E. A novel heterodimeric transferrin receptor encoded by a pair of VSG expression site-associated genes in T. brucei. Cell. 1994 Jul 15;78(1):75–86. doi: 10.1016/0092-8674(94)90574-6. [DOI] [PubMed] [Google Scholar]
  32. Salmon D., Hanocq-Quertier J., Paturiaux-Hanocq F., Pays A., Tebabi P., Nolan D. P., Michel A., Pays E. Characterization of the ligand-binding site of the transferrin receptor in Trypanosoma brucei demonstrates a structural relationship with the N-terminal domain of the variant surface glycoprotein. EMBO J. 1997 Dec 15;16(24):7272–7278. doi: 10.1093/emboj/16.24.7272. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Schalinske K. L., Blemings K. P., Steffen D. W., Chen O. S., Eisenstein R. S. Iron regulatory protein 1 is not required for the modulation of ferritin and transferrin receptor expression by iron in a murine pro-B lymphocyte cell line. Proc Natl Acad Sci U S A. 1997 Sep 30;94(20):10681–10686. doi: 10.1073/pnas.94.20.10681. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Schell D., Borowy N. K., Overath P. Transferrin is a growth factor for the bloodstream form of Trypanosoma brucei. Parasitol Res. 1991;77(7):558–560. doi: 10.1007/BF00931012. [DOI] [PubMed] [Google Scholar]
  35. Schell D., Evers R., Preis D., Ziegelbauer K., Kiefer H., Lottspeich F., Cornelissen A. W., Overath P. A transferrin-binding protein of Trypanosoma brucei is encoded by one of the genes in the variant surface glycoprotein gene expression site. EMBO J. 1991 May;10(5):1061–1066. doi: 10.1002/j.1460-2075.1991.tb08045.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Schürch N., Furger A., Kurath U., Roditi I. Contributions of the procyclin 3' untranslated region and coding region to the regulation of expression in bloodstream forms of Trypanosoma brucei. Mol Biochem Parasitol. 1997 Oct;89(1):109–121. doi: 10.1016/s0166-6851(97)00107-2. [DOI] [PubMed] [Google Scholar]
  37. Seiser C., Posch M., Thompson N., Kühn L. C. Effect of transcription inhibitors on the iron-dependent degradation of transferrin receptor mRNA. J Biol Chem. 1995 Dec 8;270(49):29400–29406. doi: 10.1074/jbc.270.49.29400. [DOI] [PubMed] [Google Scholar]
  38. Steverding D. Bloodstream forms of Trypanosoma brucei require only small amounts of iron for growth. Parasitol Res. 1998;84(1):59–62. doi: 10.1007/s004360050357. [DOI] [PubMed] [Google Scholar]
  39. Steverding D., Overath P. Trypanosoma brucei with an active metacyclic variant surface gene expression site expresses a transferrin receptor derived from esag6 and esag7. Mol Biochem Parasitol. 1996 Jun;78(1-2):285–288. doi: 10.1016/s0166-6851(96)02624-2. [DOI] [PubMed] [Google Scholar]
  40. Steverding D., Stierhof Y. D., Chaudhri M., Ligtenberg M., Schell D., Beck-Sickinger A. G., Overath P. ESAG 6 and 7 products of Trypanosoma brucei form a transferrin binding protein complex. Eur J Cell Biol. 1994 Jun;64(1):78–87. [PubMed] [Google Scholar]
  41. Steverding D., Stierhof Y. D., Fuchs H., Tauber R., Overath P. Transferrin-binding protein complex is the receptor for transferrin uptake in Trypanosoma brucei. J Cell Biol. 1995 Dec;131(5):1173–1182. doi: 10.1083/jcb.131.5.1173. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Stieger J., Wyler T., Seebeck T. Partial purification and characterization of microtubular protein from Trypanosoma brucei. J Biol Chem. 1984 Apr 10;259(7):4596–4602. [PubMed] [Google Scholar]
  43. Vassella E., Boshart M. High molecular mass agarose matrix supports growth of bloodstream forms of pleomorphic Trypanosoma brucei strains in axenic culture. Mol Biochem Parasitol. 1996 Nov 12;82(1):91–105. doi: 10.1016/0166-6851(96)02727-2. [DOI] [PubMed] [Google Scholar]
  44. Zomerdijk J. C., Ouellette M., ten Asbroek A. L., Kieft R., Bommer A. M., Clayton C. E., Borst P. The promoter for a variant surface glycoprotein gene expression site in Trypanosoma brucei. EMBO J. 1990 Sep;9(9):2791–2801. doi: 10.1002/j.1460-2075.1990.tb07467.x. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES