Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1999 Nov 15;344(Pt 1):117–123.

Extracellular regulated kinase (ERK) interaction with actin and the calponin homology (CH) domain of actin-binding proteins.

B D Leinweber 1, P C Leavis 1, Z Grabarek 1, C L Wang 1, K G Morgan 1
PMCID: PMC1220621  PMID: 10548541

Abstract

An interaction between extracellular regulated kinase 1 (ERK1) and calponin has previously been reported (Menice, Hulvershorn, Adam, Wang and Morgan (1997) J. Biol. Chem. 272 (40), 25157-25161) and has been suggested to reflect a function of calponin as a signalling molecule. We report in this study that calponin binds to both ERK1 and ERK2 under native conditions as well as in an overlay assay. Using chymotryptic fragments of calponin, the binding site of ERK on calponin was identified as the calponin homology (CH) domain, an N-terminal region of calponin found in other actin-binding proteins. ERK also bound, in a gel overlay assay, alpha-actinin, a protein with two tandem CH domains, as well as a 27 kDa thermolysin product of alpha-actinin containing the CH domains of alpha-actinin. The CH domain of calponin could compete with intact calponin or alpha-actinin for ERK binding. Titration of acrylodan-labelled calponin with ERK gave a K(a) of 6x10(6) M(-1) and titration of acrylodan-labelled calponin with a peptide from the alphaL16 helix of ERK gave a K(a) of 1x10(6) M(-1). Recombinant ERK was found to co-sediment with purified actin and induced a fluorescence change in pyrene-labelled F-actin (K(a)=5x10(6) M(-1)). The interaction of ERK with CH domains points to a new potential function for CH domains. The interaction of ERK with actin raises the possibility that actin may provide a scaffold for ERK signalling complexes in both muscle and non-muscle cells.

Full Text

The Full Text of this article is available as a PDF (229.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abe M., Takahashi K., Hiwada K. Effect of calponin on actin-activated myosin ATPase activity. J Biochem. 1990 Nov;108(5):835–838. doi: 10.1093/oxfordjournals.jbchem.a123289. [DOI] [PubMed] [Google Scholar]
  2. Castresana J., Saraste M. Does Vav bind to F-actin through a CH domain? FEBS Lett. 1995 Oct 30;374(2):149–151. doi: 10.1016/0014-5793(95)01098-y. [DOI] [PubMed] [Google Scholar]
  3. Cooper J. A., Walker S. B., Pollard T. D. Pyrene actin: documentation of the validity of a sensitive assay for actin polymerization. J Muscle Res Cell Motil. 1983 Apr;4(2):253–262. doi: 10.1007/BF00712034. [DOI] [PubMed] [Google Scholar]
  4. Dessy C., Kim I., Sougnez C. L., Laporte R., Morgan K. G. A role for MAP kinase in differentiated smooth muscle contraction evoked by alpha-adrenoceptor stimulation. Am J Physiol. 1998 Oct;275(4 Pt 1):C1081–C1086. doi: 10.1152/ajpcell.1998.275.4.C1081. [DOI] [PubMed] [Google Scholar]
  5. Draeger A., Gimona M., Stuckert A., Celis J. E., Small J. V. Calponin. Developmental isoforms and a low molecular weight variant. FEBS Lett. 1991 Oct 7;291(1):24–28. doi: 10.1016/0014-5793(91)81095-p. [DOI] [PubMed] [Google Scholar]
  6. Draeger A., Graf A. H., Staudach A., North A. J., Small J. V. Smooth muscle differentiation in human myometrium and uterine leiomyoma. Virchows Arch B Cell Pathol Incl Mol Pathol. 1993;64(1):21–27. doi: 10.1007/BF02915092. [DOI] [PubMed] [Google Scholar]
  7. Feramisco J. R., Burridge K. A rapid purification of alpha-actinin, filamin, and a 130,000-dalton protein from smooth muscle. J Biol Chem. 1980 Feb 10;255(3):1194–1199. [PubMed] [Google Scholar]
  8. Fukata M., Kuroda S., Fujii K., Nakamura T., Shoji I., Matsuura Y., Okawa K., Iwamatsu A., Kikuchi A., Kaibuchi K. Regulation of cross-linking of actin filament by IQGAP1, a target for Cdc42. J Biol Chem. 1997 Nov 21;272(47):29579–29583. doi: 10.1074/jbc.272.47.29579. [DOI] [PubMed] [Google Scholar]
  9. Gilmore A. P., Parr T., Patel B., Gratzer W. B., Critchley D. R. Analysis of the phasing of four spectrin-like repeats in alpha-actinin. Eur J Biochem. 1994 Oct 1;225(1):235–242. doi: 10.1111/j.1432-1033.1994.00235.x. [DOI] [PubMed] [Google Scholar]
  10. Gimona M., Mital R. The single CH domain of calponin is neither sufficient nor necessary for F-actin binding. J Cell Sci. 1998 Jul;111(Pt 13):1813–1821. doi: 10.1242/jcs.111.13.1813. [DOI] [PubMed] [Google Scholar]
  11. Gimona M., Sparrow M. P., Strasser P., Herzog M., Small J. V. Calponin and SM 22 isoforms in avian and mammalian smooth muscle. Absence of phosphorylation in vivo. Eur J Biochem. 1992 May 1;205(3):1067–1075. doi: 10.1111/j.1432-1033.1992.tb16875.x. [DOI] [PubMed] [Google Scholar]
  12. Gonzalez F. A., Seth A., Raden D. L., Bowman D. S., Fay F. S., Davis R. J. Serum-induced translocation of mitogen-activated protein kinase to the cell surface ruffling membrane and the nucleus. J Cell Biol. 1993 Sep;122(5):1089–1101. doi: 10.1083/jcb.122.5.1089. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Horowitz A., Menice C. B., Laporte R., Morgan K. G. Mechanisms of smooth muscle contraction. Physiol Rev. 1996 Oct;76(4):967–1003. doi: 10.1152/physrev.1996.76.4.967. [DOI] [PubMed] [Google Scholar]
  14. Khalil R. A., Menice C. B., Wang C. L., Morgan K. G. Phosphotyrosine-dependent targeting of mitogen-activated protein kinase in differentiated contractile vascular cells. Circ Res. 1995 Jun;76(6):1101–1108. doi: 10.1161/01.res.76.6.1101. [DOI] [PubMed] [Google Scholar]
  15. Khalil R. A., Morgan K. G. PKC-mediated redistribution of mitogen-activated protein kinase during smooth muscle cell activation. Am J Physiol. 1993 Aug;265(2 Pt 1):C406–C411. doi: 10.1152/ajpcell.1993.265.2.C406. [DOI] [PubMed] [Google Scholar]
  16. Khokhlatchev A. V., Canagarajah B., Wilsbacher J., Robinson M., Atkinson M., Goldsmith E., Cobb M. H. Phosphorylation of the MAP kinase ERK2 promotes its homodimerization and nuclear translocation. Cell. 1998 May 15;93(4):605–615. doi: 10.1016/s0092-8674(00)81189-7. [DOI] [PubMed] [Google Scholar]
  17. Khokhlatchev A., Xu S., English J., Wu P., Schaefer E., Cobb M. H. Reconstitution of mitogen-activated protein kinase phosphorylation cascades in bacteria. Efficient synthesis of active protein kinases. J Biol Chem. 1997 Apr 25;272(17):11057–11062. doi: 10.1074/jbc.272.17.11057. [DOI] [PubMed] [Google Scholar]
  18. Lee I. S., Liu Y., Narazaki M., Hibi M., Kishimoto T., Taga T. Vav is associated with signal transducing molecules gp130, Grb2 and Erk2, and is tyrosine phosphorylated in response to interleukin-6. FEBS Lett. 1997 Jan 20;401(2-3):133–137. doi: 10.1016/s0014-5793(96)01456-1. [DOI] [PubMed] [Google Scholar]
  19. Lenormand P., Sardet C., Pagès G., L'Allemain G., Brunet A., Pouysségur J. Growth factors induce nuclear translocation of MAP kinases (p42mapk and p44mapk) but not of their activator MAP kinase kinase (p45mapkk) in fibroblasts. J Cell Biol. 1993 Sep;122(5):1079–1088. doi: 10.1083/jcb.122.5.1079. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Mabuchi K., Li Y., Tao T., Wang C. L. Immunocytochemical localization of caldesmon and calponin in chicken gizzard smooth muscle. J Muscle Res Cell Motil. 1996 Apr;17(2):243–260. doi: 10.1007/BF00124246. [DOI] [PubMed] [Google Scholar]
  21. McCallum S. J., Erickson J. W., Cerione R. A. Characterization of the association of the actin-binding protein, IQGAP, and activated Cdc42 with Golgi membranes. J Biol Chem. 1998 Aug 28;273(35):22537–22544. doi: 10.1074/jbc.273.35.22537. [DOI] [PubMed] [Google Scholar]
  22. Menice C. B., Hulvershorn J., Adam L. P., Wang C. A., Morgan K. G. Calponin and mitogen-activated protein kinase signaling in differentiated vascular smooth muscle. J Biol Chem. 1997 Oct 3;272(40):25157–25161. doi: 10.1074/jbc.272.40.25157. [DOI] [PubMed] [Google Scholar]
  23. Mezgueldi M., Fattoum A., Derancourt J., Kassab R. Mapping of the functional domains in the amino-terminal region of calponin. J Biol Chem. 1992 Aug 5;267(22):15943–15951. [PubMed] [Google Scholar]
  24. Mimura N., Asano A. Further characterization of a conserved actin-binding 27-kDa fragment of actinogelin and alpha-actinins and mapping of their binding sites on the actin molecule by chemical cross-linking. J Biol Chem. 1987 Apr 5;262(10):4717–4723. [PubMed] [Google Scholar]
  25. Mimura N., Asano A. Isolation and characterization of a conserved actin-binding domain from rat hepatic actinogelin, rat skeletal muscle, and chicken gizzard alpha-actinins. J Biol Chem. 1986 Aug 15;261(23):10680–10687. [PubMed] [Google Scholar]
  26. Mino T., Yuasa U., Nakamura F., Naka M., Tanaka T. Two distinct actin-binding sites of smooth muscle calponin. Eur J Biochem. 1998 Jan 15;251(1-2):262–268. doi: 10.1046/j.1432-1327.1998.2510262.x. [DOI] [PubMed] [Google Scholar]
  27. North A. J., Gimona M., Lando Z., Small J. V. Actin isoform compartments in chicken gizzard smooth muscle cells. J Cell Sci. 1994 Mar;107(Pt 3):445–455. doi: 10.1242/jcs.107.3.445. [DOI] [PubMed] [Google Scholar]
  28. O'Farrell P. Z., Goodman H. M., O'Farrell P. H. High resolution two-dimensional electrophoresis of basic as well as acidic proteins. Cell. 1977 Dec;12(4):1133–1141. doi: 10.1016/0092-8674(77)90176-3. [DOI] [PubMed] [Google Scholar]
  29. Parker C. A., Takahashi K., Tang J. X., Tao T., Morgan K. G. Cytoskeletal targeting of calponin in differentiated, contractile smooth muscle cells of the ferret. J Physiol. 1998 Apr 1;508(Pt 1):187–198. doi: 10.1111/j.1469-7793.1998.187br.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Parker C. A., Takahashi K., Tao T., Morgan K. G. Agonist-induced redistribution of calponin in contractile vascular smooth muscle cells. Am J Physiol. 1994 Nov;267(5 Pt 1):C1262–C1270. doi: 10.1152/ajpcell.1994.267.5.C1262. [DOI] [PubMed] [Google Scholar]
  31. Pedraza-Alva G., Mérida L. B., Burakoff S. J., Rosenstein Y. T cell activation through the CD43 molecule leads to Vav tyrosine phosphorylation and mitogen-activated protein kinase pathway activation. J Biol Chem. 1998 Jun 5;273(23):14218–14224. doi: 10.1074/jbc.273.23.14218. [DOI] [PubMed] [Google Scholar]
  32. Robinson M. J., Cobb M. H. Mitogen-activated protein kinase pathways. Curr Opin Cell Biol. 1997 Apr;9(2):180–186. doi: 10.1016/s0955-0674(97)80061-0. [DOI] [PubMed] [Google Scholar]
  33. Song J. S., Gomez J., Stancato L. F., Rivera J. Association of a p95 Vav-containing signaling complex with the FcepsilonRI gamma chain in the RBL-2H3 mast cell line. Evidence for a constitutive in vivo association of Vav with Grb2, Raf-1, and ERK2 in an active complex. J Biol Chem. 1996 Oct 25;271(43):26962–26970. doi: 10.1074/jbc.271.43.26962. [DOI] [PubMed] [Google Scholar]
  34. Stradal T., Kranewitter W., Winder S. J., Gimona M. CH domains revisited. FEBS Lett. 1998 Jul 17;431(2):134–137. doi: 10.1016/s0014-5793(98)00751-0. [DOI] [PubMed] [Google Scholar]
  35. Takahashi K., Hiwada K., Kokubu T. Isolation and characterization of a 34,000-dalton calmodulin- and F-actin-binding protein from chicken gizzard smooth muscle. Biochem Biophys Res Commun. 1986 Nov 26;141(1):20–26. doi: 10.1016/s0006-291x(86)80328-x. [DOI] [PubMed] [Google Scholar]
  36. Takahashi K., Nadal-Ginard B. Molecular cloning and sequence analysis of smooth muscle calponin. J Biol Chem. 1991 Jul 15;266(20):13284–13288. [PubMed] [Google Scholar]
  37. Tsakiridis T., Bergman A., Somwar R., Taha C., Aktories K., Cruz T. F., Klip A., Downey G. P. Actin filaments facilitate insulin activation of the src and collagen homologous/mitogen-activated protein kinase pathway leading to DNA synthesis and c-fos expression. J Biol Chem. 1998 Oct 23;273(43):28322–28331. doi: 10.1074/jbc.273.43.28322. [DOI] [PubMed] [Google Scholar]
  38. Walsh M. P. Regulation of vascular smooth muscle tone. Can J Physiol Pharmacol. 1994 Aug;72(8):919–936. doi: 10.1139/y94-130. [DOI] [PubMed] [Google Scholar]
  39. Wills F. L., McCubbin W. D., Kay C. M. Characterization of the smooth muscle calponin and calmodulin complex. Biochemistry. 1993 Mar 9;32(9):2321–2328. doi: 10.1021/bi00060a025. [DOI] [PubMed] [Google Scholar]
  40. Wills F. L., McCubbin W. D., Kay C. M. Smooth muscle calponin-caltropin interaction: effect on biological activity and stability of calponin. Biochemistry. 1994 May 10;33(18):5562–5569. doi: 10.1021/bi00184a027. [DOI] [PubMed] [Google Scholar]
  41. Xu J., Wirtz D., Pollard T. D. Dynamic cross-linking by alpha-actinin determines the mechanical properties of actin filament networks. J Biol Chem. 1998 Apr 17;273(16):9570–9576. doi: 10.1074/jbc.273.16.9570. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES