RESEARCH COMMUNICATION Amyloid- β binds catalase with high affinity and inhibits hydrogen peroxide breakdown

Nathaniel G. N. MILTON¹

Department of Molecular Pathology and Clinical Biochemistry, Royal Free and University College Medical School, University College London, Royal Free Campus, Rowland Hill Street, London NW3 2PF, U.K.

Amyloid- β (A β) specifically bound purified catalase with high affinity and inhibited catalase breakdown of H₂O₂. The A β -induced catalase inhibition involved formation of the inactive catalase Compound II and was reversible. Catalase $\leftrightarrow A\beta$ interactions provide rapid functional assays for the cytotoxic domain

INTRODUCTION

The amyloid- β (A β) peptide is a major component of the senile plaques in Alzheimer's disease, and these are associated with areas of neurodegeneration [1]. The cytotoxicity of A β is mediated via a functional domain between A β residues 25–35 which is active in a range of cell types [2–4]. Binding sites for A β have been identified [5,6] on the P75 neurotrophin receptor (P75ntr) and the intracellular endoplasmic-reticulum A β -binding protein (ERAB). Inhibition of A β binding to both the P75ntr and ERAB reduces the cytotoxicity of A β , suggesting that these proteins play a permissive role in A β cytotoxicity [5,6].

The peroxidase enzyme catalase is also associated with senile plaques [7,8] and protects cells in culture from the actions of $A\beta$ [9–12]. The ability of catalase to breakdown hydrogen proxide (H₂O₂) generated in response to $A\beta$ was suggested as a mechanism for catalase protection [9]. The existence of cytoplasmic catalase [13] and $A\beta$ uptake into cells [14] suggests that interactions between these compounds could occur within cells. Addition of inactivated catalase to cell cultures still provides protection [12], suggesting that a direct interaction between $A\beta$ and catalase may be involved.

The present study set out to determine whether catalase binds to $A\beta$ and to assess the effects of $A\beta$ on catalase breakdown of $H_{9}O_{9}$.

METHODS

Binding studies

Biotinylated A β -(1–42)-peptide (A β 1–42), A β 12–28 and A β 25–35 were prepared using a LinKit–Biolink Kit (ISL, Paignton, Devon, U.K.). ELISA plates were coated with catalase (1 μ g/ml) in carbonate buffer, pH 9.6, and unoccupied sites blocked with 5% (w/v) Marvel dried milk. Biotinylated peptides (200 pM) were incubated alone, with control peptides or with unlabelled A β peptides in PBS (containing 0.1% BSA and 0.05% Tween-20) at 37 °C for 4 h. After washing to remove unbound material, an alkaline phosphatase polymer–streptavidin conjugate (Sigma, Poole, Dorset, U.K.) was added and incubated at 37 °C for 2 h.

of $A\beta$ and suggest a mechanism for some of the observed actions of $A\beta$ plus catalase *in vitro*.

Key words: Alzheimer's, antibodies, cytotoxicity, myeloma, peroxidase.

After washing to remove unbound material, *p*-nitrophenyl phosphate substrate was added and absorbance at 405 nm determined. Affinity constants were determined by Scatchard analysis [15] using the following equation:

$$A_0/(A_0 - A) = 1 + K_d/a_0$$

and plotting $v[(A_0 - A)/A_0]$ against v/a, where A_0 is the absorbance in the absence of unlabelled peptide, A is the absorbance in the presence of unlabelled peptide, a_0 is the total concentration of unlabelled peptide and a is the concentration of unlabelled peptide added. The dissociation constant (K_d) was equal to -1/slope of v against v/a.

Catalase activity

Catalase (EC 1.11.1.6) from human erythrocytes (Sigma) was used for all incubation experiments. The activity of catalase (50 kunits/litre) incubated with test peptides (2 μ M) was determined [16] after incubation in 60 mM sodium/potassium phosphate buffer, pH 7.4, at 37 °C in a total volume of 100 μ l. After incubation, catalase activity was determined by mixing 50 μ l of sample with 50 μ l of substrate (6.5 μ mol of H₂O₂ in phosphate buffer) for 60 s, adding 100 μ l of 32.4 mM ammonium molybdate and measurement of absorbance change at 405 nm. Catalase activity was calculated from a standard curve (0–100 k-units/litre) using purified human catalase of known activity.

Cell cytotoxicity

SP2/0-Ag-14 mouse myeloma cells (2×10^5 cells/ml) were plated in PBS containing 0.1 % BSA and test peptides ($20 \ \mu$ M) and incubated at 37 °C in a 5%-CO₂ humidified atmosphere. Cells were harvested and viability was determined by Trypan Blue dye exclusion [9] with at least 100 cells counted per well.

Monoclonal-antibody production

Mouse spleen cells were immunized *in vitro* with $A\beta$ 17–42 using a Cel-Prime Kit (Insight Biotechnology, Wembley, Middx.,

Abbreviations used: $A\beta$, amyloid- β ; P75ntr, P75 neurotrophin receptor; ERAB, endoplasmic-reticulum $A\beta$ -binding protein; $A\beta x$ –y, $A\beta$ -(x–y)-peptide; AIP, a β -sheet breaker peptide with the amino acid sequence His-Pro-GIn-Pro-Leu-Asp-Phe-Phe-GIn-Pro; CRH, corticotrophin-releasing hormone. ¹ e-mail nmilton@rfhsm.ac.uk

U.K.). After immunization, cells were fused with mouse myeloma cells using poly(ethylene glycol). Hybridomas selected in hypoxanthine/aminopterin/thymidine ('HAT') medium were screened for antibodies against A β 25–35 by ELISA [17] and cell line ALI-01, producing an IgM isotype anti-(A β 25–35) antibody was selected.

Data analysis

Data are expressed as means \pm S.E.M. Catalase levels are expressed as percentage inhibition of control (untreated) catalase. For cytotoxicity experiments data are expressed as percentage of dead (Trypan Blue-stained) cells. The significance of differences between data was evaluated by one-way analysis of variance. A *P* value of < 0.05 was considered statistically significant.

RESULTS

Catalase binding to $A\beta$

Biotinylated $A\beta$ peptides were used to test for $A\beta$ binding to human catalase. Results showed that $A\beta 1$ –42 and $A\beta 25$ –35, but not $A\beta 12$ –28, bound specifically to catalase. Fragments of $A\beta$ containing residues 31–35 could inhibit the binding of $A\beta 1$ –42 to catalase (Figure 1A). This region of $A\beta$ has previously been suggested to contain the binding domain responsible for $A\beta$ cytotoxicity [18]. Scatchard analysis of binding data demonstrated a K_a of 3.3 ± 0.2 nM (n = 5) for $A\beta 1$ –42 binding to catalase and showed no difference between the binding of $A\beta$ 1–42 or $A\beta 25–35$ to catalase (Figure 1B). Binding to catalasecoated plates was also inhibited by catalase in solution, but was unaffected by the unrelated proteins (BSA, human fibrinogen, mouse IgGs and alkaline phosphatase).

Effect of A β on catalase breakdown of H₂O₂

Since $A\beta$ binds to catalase, the effects of $A\beta$ 1–42 and peptide fragments on catalase breakdown of H_2O_2 were examined. Incubation of human catalase with $A\beta$ 1–42, $A\beta$ 1–40, $A\beta$ 17–42, $A\beta$ 25–35 and $A\beta$ 31–35 caused a significant inhibition of H_2O_2 breakdown (Figure 1C). The $A\beta$ 31–35 region was thus contained in all the fragments of $A\beta$ that bind to, and inhibit, catalase. The inhibition of catalase activity was time-dependent, with significant levels of inhibition detected after preincubation for 15 min with $A\beta$ 31–35, preincubation for 30 min with $A\beta$ 1–42, $A\beta$ 17–42 or $A\beta$ 25–35 and preincubation of 45 min with $A\beta$ 1–40.

Monoclonal antibodies against $A\beta$ [20,21] with specificities for the N-terminus (6F/3D) and C-terminus (G2-10 and G2-11) or a control antibody against corticotrophin-releasing hormone (CRH) [17] had no effect on $A\beta$ -mediated inhibition of catalase. A specific monoclonal antibody (ALI-01) against the $A\beta$ 25–35 region was therefore raised to confirm the role of the $A\beta$ 25–35 component of $A\beta$ 1–42 in catalase inhibition. The ALI-01 antibody was effective at preventing catalase inhibition by both $A\beta$ 1–42 and $A\beta$ 25–35 (Figure 1D) confirming that the $A\beta$ 25–35 component of $A\beta$ 1–42 was responsible for catalase inhibition.

The forms of $A\beta$ which bind to, and inhibit, catalase all increase the percentage cell death in myeloma cell cultures incubated for 24 h (Figure 1E). This confirms that the effects of $A\beta$ on catalase mirror the cytotoxicity of the peptide. The inhibition of catalase by $A\beta$ was also concentration-dependent (Figure 1F). The concentrations of $A\beta$ required to inhibit catalase activity and for cytotoxicity are in the micromolar range, in agreement with previous cytotoxicity studies [3] and within the tissue concentrations suggested for Alzheimer's-disease brains [19].

Figure 1 Binding of $A\beta$ 1–42 and peptide fragments to catalase plus effects on activity and cell survival

(A) Binding of biotinylated A β 1–42 (200 pM) to catalase in the presence of 2 μ M unlabelled peptide (open columns). (B) Scatchard plot of binding of A β 1–42 (\Box) and A β 25–35 (\odot) to catalase in the presence of unlabelled A β 1–42. (C) Human catalase inhibition in the presence of A β peptide fragments. (D) Effects of ALI-01, an anti-(A β 25–35) monoclonal antibody (closed columns) and control antibody (open columns) on human catalase inhibition. (E) Effect of A β peptide fragments on mouse myeloma cell viability. (F) Human catalase inhibition in the presence of increasing concentrations of A β 1–42 (\bigcirc), A β 17–42 (\blacksquare) and A β 34–42 (\triangle). The control for all experiments was the CRH peptide. All results are means \pm S.E.M., n = 8 for each group: *P < 0.05 versus control peptide; **P < 0.05 for ALI-01 + A β 1–42 versus control antibody + A β 1–42; †P < 0.05 for ALI-01 + A β 25–35.

Mechanism for $A\beta$ inhibition of catalase

Catalase breakdown of H_2O_2 causes the formation of Compound I [22], which can then break down either H_2O_2 or ethanol. Compound I can be converted into an inactive form of catalase, Compound II [22], and this inactivation can be prevented by excess ethanol or reversed by NADPH (Figure 2A). Chemical inhibition of catalase by 3-amino-1,2,4-triazole or 3,3'-diaminobenzidine can be prevented by addition of ethanol and NADPH [22,23]. To determine whether $A\beta$ acts in a similar manner, catalase-incubation experiments were carried out in the presence of ethanol or NADPH. Results showed that the inhibition of catalase by $A\beta$ 1–42 was abolished in the presence of ethanol plus H_2O_2 and significantly decreased in the presence of NADPH; control incubations with H_2O_2 alone or NADP⁺ had no effect (Figure 2B).

The A β 1–40 peptide contains a heavy-metal-binding domain [24] that can bind iron but which is absent from the N-terminally truncated form A β 17–40. Iron can increase A β cytotoxicity and

Figure 2 Mechanism for $A\beta$ inhibition of catalase activity

(A) Proposed model for catalase breakdown of H₂O₂ and Compound II formation during human catalase inhibition [22]. (B) Effects of ethanol (EtOH; 20 mM) + H₂O₂ (1 mM), H₂O₂ (1 mM), NADP⁺ (20 μ M) and NADPH (20 μ M) on human catalase inhibition by A β 1–42. (C) human catalase inhibition by A β 1–42 and A β 17–42 in phosphate buffer (open columns), phosphate buffer containing FeCl₂ (closed columns; 25 μ M) and phosphate buffer containing MgCl₂ (hatched columns; 25 μ M). All results are means ± S.E.M., n = 8 for each group; *P < 0.05 versus A β 1–42.

aggregation in vitro [25,26] and is directly involved in A β generation of H₂O₂ [19]. Human catalase activity requires iron [22] bound to an active site at residue 358, and it is possible that an interaction between $A\beta$ and iron could influence enzyme activity. Incubation of catalase with $A\beta$ in buffer supplemented with 25 μ M FeCl₂ caused a decrease in the A β 1–42, but not the A β 17–42, inhibition of catalase activity, whereas control incubations in buffer supplemented with 25 μ M MgCl₂ had no effect (Figure 2C), suggesting that $A\beta$ binding to the haem group of catalase is not the main cause of catalase inhibition. Under these conditions, A β 1–42 has previously been shown to aggregate [24], and the decreased ability of A β 1–42 to inhibit catalase in the presence of iron may be due to this effect. Incubation of A β 1–42 at 37 °C for 7 days prior to use has previously been shown to cause aggregation of A β [3,4]. A preparation of aggregated A β 1–42 was used to test whether aggregation prevented A β 1–42 inhibition of catalase. Results showed that aggregated A β 1–42 $(2 \mu M)$ inhibited catalase activity by $15.4 \pm 2.9 \%$ (n = 8), whereas freshly prepared A β 1–42 (2 μ M) inhibited catalase activity by $34.7 \pm 4.9\%$ (n = 8), confirming that the decreased catalase inhibition by A β 1–42 in the presence of iron could be explained by aggregation of the peptide.

Use of a catalase-inhibition assay to identify compounds which block $A\beta$ cytotoxicity

The ability of cytotoxic forms of $A\beta$ to inhibit catalase activity suggests that measurement of catalase activity in the presence of $A\beta$ could be adapted as an assay for molecules which interact with $A\beta$ and prevent cytotoxicity. The β -sheet breaker peptides prevent aggregation of $A\beta$ and are effective inhibitors of $A\beta$

Table 1 Effect of a β -sheet breaker peptide, AIP, on A β 1–42 inhibition of catalase activity and cytotoxicity

The Table shows human catalase activity, expressed as percentage catalase inhibition, in the presence of 2 μ M peptides, and mouse myeloma viability, expressed as percentage cell death, in the presence of 20 μ M peptide. Control peptide 1 = CRH; control peptide 2 = somatostatin. All results are means ± S.E.M., n = 8 for each group."P < 0.05 versus control 1 + control 2; †P < 0.05 versus A β 1–42 + control 2.

	Catalase inhibition (%)	Cell death (%)
Control 1 + control 2 AIP + control 1 A β 1-42 + control 2 A β 1-42 + AIP	$\begin{array}{c} 1.5 \pm 3.1 \\ - \ 0.8 \pm 3.2 \\ 33.2 \pm 1.9 \\ 7.9 \pm 1.6 \end{array}$	$\begin{array}{c} 20.1 \pm 8.0 \\ 23.3 \pm 7.1 \\ 56.1 \pm 7.4^{*} \\ 23.5 \pm 5.1 \\ \end{array}$

cytotoxicity [27]. A β -sheet breaker peptide (AIP) with the amino acid sequence His-Pro-Gln-Pro-Leu-Asp-Phe-Phe-Gln-Pro was tested in both a cytotoxicity assay and an A β -catalase inhibition assay. Results showed that the AIP peptide at equimolar concentrations prevented A β 1–42 inhibition of catalase activity and blocked A β 1–42 cytotoxicity (Table 1), further supporting the suggestion that an A β -catalase inhibition assay could be used to identify molecules which interact with A β and prevent cytotoxicity.

DISCUSSION

The K_{α} for A β binding to catalase is in the same nanomolar range as the blood and cerebrospinal-fluid A β concentrations [28], and A β has biological activities at such nanomolar concentrations [2,29], suggesting that interactions between $A\beta$ and catalase could have a physiological role. The binding of $A\beta$ to catalase may be a component of the mechanism for $A\beta$ inhibition of catalase breakdown of H2O2. The observation that blockade of catalase Compound II formation prevents $A\beta$ inhibition of catalase suggests that $A\beta$ may be involved in oxidizing the enzyme, a mechanism already proposed for $A\beta$ inactivation of other enzymes [30], and this process appears to involve $A\beta$ binding to catalase. The high-affinity binding of $A\beta$ to catalase is probably responsible for the ability of inactivated catalase to neutralize $A\beta$ cytotoxicity [12]. The specificity of the catalase for the cytotoxic domain of A β [2] provides a mechanism for catalase blockade of $A\beta$ cytotoxicity.

The ability of $A\beta$ to inhibit catalase activity may contribute to A β cytotoxicity. In the *in vitro* environment employed in cellculture studies [2–4], the levels of $A\beta$ are probably sufficient to inhibit catalase activity, and this would contribute to the cytotoxicity of A β . These A β concentrations are vastly in excess of the blood and cerebrospinal-fluid levels of soluble A β peptide [28]. However, the Alzheimer's-disease brain tissue total $A\beta$ levels have been suggested to reach this value [19]. The insoluble nature of the A β in Alzheimer's-disease brain tissue [1] represents a form of A β that has a reduced ability to inhibit catalase activity. The key question for Alzheimer's pathology is whether sufficient A β would be in a form to bind to, and inhibit, catalase. The presence of catalase in Alzheimer's-disease plaques [7,8] may reflect *in vivo* binding of catalase to $A\beta$ and, as a result of the total A β concentrations in this environment, the catalase activity could be inactivated.

The ability of $A\beta$ to bind to, and inhibit the activity of, catalase with specificity for the cytotoxic $A\beta$ 25–35 region provides potential rapid screening methods for compounds which interact with this region of $A\beta$. The catalase-inhibition assay can

be performed within 2 h and using the 96-well-microtitre-plate format has the potential to screen many samples simultaneously. The interactions between these compounds are likely to play roles both *in vivo* and *in vitro*.

I thank A. D. Milton, N. M. Bascombe-Milton, J. Rawlinson and A. F. Winder for discussions, N. Mayor for technical assistance and K. Beyreuther for anti-(A β C-terminal) antibodies. This work was supported by Insight Biotechnology and the Royal Free Hospital Trust.

REFERENCES

- 1 Selkoe, D. (1989) Annu. Rev. Neurosci. 12, 463–490
- 2 Yanker, B. A., Duffy, L. and Kirschner, D. (1990) Science 250, 279-282
- 3 Iversen, L. L., Mortishire-Smith, R. J., Pollack, S. J. and Shearman, M. S. (1995) Biochem. J. **311**, 1–16
- 4 Mazzioti, M. and Perlmutter, D. H. (1998) Biochem. J. 332, 517-524
- 5 Yaar, M., Zhai, S., Pilch, P., Doyle, S., Eisenhauer, P., Fine, R. and Gilchrest, B. A. (1997) J. Clin. Invest. **100**, 2333–2340
- 6 Yan, S. D., Soto, C., Chen, X., Zhu, H., Al-Mohanna, F., Collison, K., Zhu, A., Stern, E., Saido, T., Tohyama, M. et al. (1997) Nature (London) **389**, 689–695
- 7 Lovell, M. A., Ehmann, W. D., Butler, S. M. and Markesbery, W. R. (1995) Neurology 45, 1594–1601
- Pappolla, M. A., Omar, R. A., Kim, K. S. and Robakis, N. K. (1992) Am. J. Pathol. 140, 621–628
- 9 Behl, C., Davies, J. B., Lesley, R. and Schubert, D. (1994) Cell 77, 817-827
- 10 Goodman, Y., Steiner, M., Steiner, S. and Mattson, M. P. (1994) Brain Res. 654, 171–176
- 11 Manelli, A. M. and Puttfarcken, P. S. (1995) Brain Res. Bull. 8, 569–576
- 12 Zhang, Z., Rydel, R. E., Drzewiecki, G. J., Fuson, K., Wright, S., Wogulis, M., Audia, J. E., May, P. C. and Hyslop, P. A. (1996) J. Neurochem. 67, 1595–1606

Received 1 September 1999/24 September 1999; accepted 1 October 1999

- Bulitta, C., Ganea, C., Fahimi, H. D. and Volkl, A. (1996) Biochim. Biophys. Acta. 1293, 55–62
- 14 Ida, N., Masters, C. L. and Beyreuther, K. (1996) FEBS Lett. 394, 174-178
- Friguet, B., Chaffotte, A. F., Djavadi-Ohaniance, L. and Goldberg, M. E. (1985) J. Immunol. Methods 77, 305–319
- 16 Goth, L. (1991) Clin. Chim. Acta 196, 143–152
- 17 Milton, N. G. N., Hillhouse, E. W., Nicholson, S. A., Self, C. H. and McGregor, A. M. (1990) J. Mol. Endocrinol. 5, 159–166
- 18 Laskay, G., Zarandi, M., Varga, J., Jost, K., Fonagy, A., Torday, C., Latzkovits, L. and Penke, B. (1997) Biochem. Biophys. Res. Commun. 235, 479–481
- Huang, X., Atwood, C. S., Hartshorn, M. A., Multhaup, G., Goldstein, L. E., Scarpa, R. C., Cuajungco, M. P., Gray, D. N., Lim, J., Moir, R. D. et al. (1999) Biochemistry 38, 7609–7616
- 20 Ida, N., Hartmann, T., Pantel, J., Schroder, J., Zerfass, R., Forstl, H., Sandbrink, R., Masters, C. L. and Beyreuther, K. (1996) J. Biol. Chem. 271, 22908–22914
- 21 Solomon, B., Koppel, R., Hanan, E. and Katzav, T. (1996) Proc. Natl. Acad. Sci. U.S.A. **93**, 452–455
- 22 Hillar, A., Nicholls, P, Switala, J. and Loewen, P. C. (1994) Biochem. J. 300, 531–539
- 23 Darr, D. and Fridovich, I. (1985) Biochem. J. 226, 781-787
- 24 Bush, A. I., Pettingell, W. H., Paradis, M. D. and Tanzi, R. E. (1994) J. Biol.Chem. 269, 12152–12158
- 25 Dyrks, T., Dyrks, E., Hartmann, T., Masters, C. and Beyreuther, K. (1992) J. Biol. Chem. 267, 18210–18217
- 26 Goodman, Y. and Mattson, M. P. (1994) Exp. Neurol. 128, 1-12
- 27 Seubert, P., Vigo-Pelfrey, C., Esch, F., Lee, M., Dovey, H., Davis, D., Sinha, S., Schlossmacher, M., Whaley, J., Swindlehurst, C. et al. (1992) Nature (London) 359, 325–327
- 28 Soto, C., Sigurdsson, E. M., Morelli, L., Kumar, R. A., Castano, E. M. and Frangione, B. (1998) Nat. Med. 4, 822–826
- 29 Pederson, W. A., Kloczewiak, M. A. and Blusztajn, J. K. (1996) Proc. Natl. Acad. Sci. U.S.A. 93, 8068–8071
- 30 Hensley, K., Carney, J., Mattson, M., Aksenova, M., Harris, M., Wu, J., Floyd, R. and Butterfield, D. (1994) Proc. Natl. Acad. Sci. U.S.A. 91, 3270–3274