Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1999 Dec 15;344(Pt 3):819–825.

Molecular cloning and characterization of a novel dual-specificity protein phosphatase possibly involved in spermatogenesis.

K Nakamura 1, H Shima 1, M Watanabe 1, T Haneji 1, K Kikuchi 1
PMCID: PMC1220704  PMID: 10585869

Abstract

Dual-specificity protein phosphatases (DSPs) play roles in the regulation of mitogenic signal transduction for extracellular stimulation and the cell cycle. In the present study, we identified a novel DSP, termed TMDP (testis- and skeletal-muscle-specific DSP). Nucleotide sequence analysis of TMDP cDNA indicated that the open reading frame of 597 bp encodes a protein of 198 amino acid residues with a predicted molecular mass of 22.5 kDa. The deduced amino acid sequence contains a motif for a conserved catalytic domain of DSPs and shows highest similarity to human Vaccinia HI-related phosphatase (45.5% identity) but low homology to the mitogen-activated protein kinase phosphatase and CDC25 subfamilies of DSPs. Recombinant TMDP protein exhibited intrinsic phosphatase activity towards both phospho-seryl/threonyl and -tyrosyl residues of myelin basic protein, with similar specific activities in vitro. Northern-blot analysis revealed that TMDP is most abundantly expressed in the testis. The expression in the testis is characterized as follows: (i) TMDP mRNA first appeared 3 weeks after birth, corresponding to the time that meiosis begins; (ii) TMDP mRNA was abundant in fractionated spermatocytes and round spermatids; and (iii) hybridization in situ showed that the TMDP mRNA is localized in spermatocytes and/or spermatids in seminiferous tubules. These data demonstrate that TMDP is a novel DSP abundantly expressed in the testis and suggest that TMDP may be involved in the regulation of meiosis and/or differentiation of testicular germ cells during spermatogenesis.

Full Text

The Full Text of this article is available as a PDF (229.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albanesi C., Geremia R., Giorgio M., Dolci S., Sette C., Rossi P. A cell- and developmental stage-specific promoter drives the expression of a truncated c-kit protein during mouse spermatid elongation. Development. 1996 Apr;122(4):1291–1302. doi: 10.1242/dev.122.4.1291. [DOI] [PubMed] [Google Scholar]
  2. Alphey L., Jimenez J., White-Cooper H., Dawson I., Nurse P., Glover D. M. twine, a cdc25 homolog that functions in the male and female germline of Drosophila. Cell. 1992 Jun 12;69(6):977–988. doi: 10.1016/0092-8674(92)90616-k. [DOI] [PubMed] [Google Scholar]
  3. Aroca P., Bottaro D. P., Ishibashi T., Aaronson S. A., Santos E. Human dual specificity phosphatase VHR activates maturation promotion factor and triggers meiotic maturation in Xenopus oocytes. J Biol Chem. 1995 Jun 9;270(23):14229–14234. doi: 10.1074/jbc.270.23.14229. [DOI] [PubMed] [Google Scholar]
  4. Berruti G., Borgonovo B. sp42, the boar sperm tyrosine kinase, is a male germ cell-specific product with a highly conserved tissue expression extending to other mammalian species. J Cell Sci. 1996 Apr;109(Pt 4):851–858. doi: 10.1242/jcs.109.4.851. [DOI] [PubMed] [Google Scholar]
  5. Bielke W., Blaschke R. J., Miescher G. C., Zürcher G., Andres A. C., Ziemiecki A. Characterization of a novel murine testis-specific serine/threonine kinase. Gene. 1994 Feb 25;139(2):235–239. doi: 10.1016/0378-1119(94)90762-5. [DOI] [PubMed] [Google Scholar]
  6. Charles C. H., Abler A. S., Lau L. F. cDNA sequence of a growth factor-inducible immediate early gene and characterization of its encoded protein. Oncogene. 1992 Jan;7(1):187–190. [PubMed] [Google Scholar]
  7. Courtot C., Fankhauser C., Simanis V., Lehner C. F. The Drosophila cdc25 homolog twine is required for meiosis. Development. 1992 Oct;116(2):405–416. doi: 10.1242/dev.116.2.405. [DOI] [PubMed] [Google Scholar]
  8. Denu J. M., Lohse D. L., Vijayalakshmi J., Saper M. A., Dixon J. E. Visualization of intermediate and transition-state structures in protein-tyrosine phosphatase catalysis. Proc Natl Acad Sci U S A. 1996 Mar 19;93(6):2493–2498. doi: 10.1073/pnas.93.6.2493. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Draetta G., Eckstein J. Cdc25 protein phosphatases in cell proliferation. Biochim Biophys Acta. 1997 Apr 18;1332(2):M53–M63. doi: 10.1016/s0304-419x(96)00049-2. [DOI] [PubMed] [Google Scholar]
  10. Groom L. A., Sneddon A. A., Alessi D. R., Dowd S., Keyse S. M. Differential regulation of the MAP, SAP and RK/p38 kinases by Pyst1, a novel cytosolic dual-specificity phosphatase. EMBO J. 1996 Jul 15;15(14):3621–3632. [PMC free article] [PubMed] [Google Scholar]
  11. Guan K. L., Broyles S. S., Dixon J. E. A Tyr/Ser protein phosphatase encoded by vaccinia virus. Nature. 1991 Mar 28;350(6316):359–362. doi: 10.1038/350359a0. [DOI] [PubMed] [Google Scholar]
  12. Guan K. L., Butch E. Isolation and characterization of a novel dual specific phosphatase, HVH2, which selectively dephosphorylates the mitogen-activated protein kinase. J Biol Chem. 1995 Mar 31;270(13):7197–7203. doi: 10.1074/jbc.270.13.7197. [DOI] [PubMed] [Google Scholar]
  13. Hatano Y., Shima H., Haneji T., Miura A. B., Sugimura T., Nagao M. Expression of PP2A B regulatory subunit beta isotype in rat testis. FEBS Lett. 1993 Jun 7;324(1):71–75. doi: 10.1016/0014-5793(93)81535-8. [DOI] [PubMed] [Google Scholar]
  14. Hengge A. C., Denu J. M., Dixon J. E. Transition-state structures for the native dual-specific phosphatase VHR and D92N and S131A mutants. Contributions to the driving force for catalysis. Biochemistry. 1996 Jun 4;35(22):7084–7092. doi: 10.1021/bi960255i. [DOI] [PubMed] [Google Scholar]
  15. Hunter T. Protein kinases and phosphatases: the yin and yang of protein phosphorylation and signaling. Cell. 1995 Jan 27;80(2):225–236. doi: 10.1016/0092-8674(95)90405-0. [DOI] [PubMed] [Google Scholar]
  16. Ishibashi T., Bottaro D. P., Chan A., Miki T., Aaronson S. A. Expression cloning of a human dual-specificity phosphatase. Proc Natl Acad Sci U S A. 1992 Dec 15;89(24):12170–12174. doi: 10.1073/pnas.89.24.12170. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Ishibashi T., Bottaro D. P., Michieli P., Kelley C. A., Aaronson S. A. A novel dual specificity phosphatase induced by serum stimulation and heat shock. J Biol Chem. 1994 Nov 25;269(47):29897–29902. [PubMed] [Google Scholar]
  18. Ito E., Toki T., Ishihara H., Ohtani H., Gu L., Yokoyama M., Engel J. D., Yamamoto M. Erythroid transcription factor GATA-1 is abundantly transcribed in mouse testis. Nature. 1993 Apr 1;362(6419):466–468. doi: 10.1038/362466a0. [DOI] [PubMed] [Google Scholar]
  19. Kato S., Kobayashi T., Kusuda K., Nishina Y., Nishimune Y., Yomogida K., Yamamoto M., Sakagami H., Kondo H., Ohnishi M. Differentiation-dependent enhanced expression of protein phosphatase 2Cbeta in germ cells of mouse seminiferous tubules. FEBS Lett. 1996 Nov 4;396(2-3):293–297. doi: 10.1016/0014-5793(96)01119-2. [DOI] [PubMed] [Google Scholar]
  20. Keshet E., Itin A., Fischman K., Nir U. The testis-specific transcript (ferT) of the tyrosine kinase FER is expressed during spermatogenesis in a stage-specific manner. Mol Cell Biol. 1990 Sep;10(9):5021–5025. doi: 10.1128/mcb.10.9.5021. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Keyse S. M. An emerging family of dual specificity MAP kinase phosphatases. Biochim Biophys Acta. 1995 Mar 16;1265(2-3):152–160. doi: 10.1016/0167-4889(94)00211-v. [DOI] [PubMed] [Google Scholar]
  22. Keyse S. M., Emslie E. A. Oxidative stress and heat shock induce a human gene encoding a protein-tyrosine phosphatase. Nature. 1992 Oct 15;359(6396):644–647. doi: 10.1038/359644a0. [DOI] [PubMed] [Google Scholar]
  23. Kharbanda S., Pandey P., Morris P. L., Whang Y., Xu Y., Sawant S., Zhu L. J., Kumar N., Yuan Z. M., Weichselbaum R. Functional role for the c-Abl tyrosine kinase in meiosis I. Oncogene. 1998 Apr 9;16(14):1773–1777. doi: 10.1038/sj.onc.1201934. [DOI] [PubMed] [Google Scholar]
  24. King A. G., Ozanne B. W., Smythe C., Ashworth A. Isolation and characterisation of a uniquely regulated threonine, tyrosine phosphatase (TYP 1) which inactivates ERK2 and p54jnk. Oncogene. 1995 Dec 21;11(12):2553–2563. [PubMed] [Google Scholar]
  25. Kwak S. P., Dixon J. E. Multiple dual specificity protein tyrosine phosphatases are expressed and regulated differentially in liver cell lines. J Biol Chem. 1995 Jan 20;270(3):1156–1160. doi: 10.1074/jbc.270.3.1156. [DOI] [PubMed] [Google Scholar]
  26. Letwin K., Mizzen L., Motro B., Ben-David Y., Bernstein A., Pawson T. A mammalian dual specificity protein kinase, Nek1, is related to the NIMA cell cycle regulator and highly expressed in meiotic germ cells. EMBO J. 1992 Oct;11(10):3521–3531. doi: 10.1002/j.1460-2075.1992.tb05435.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Maiti S., Doskow J., Li S., Nhim R. P., Lindsey J. S., Wilkinson M. F. The Pem homeobox gene. Androgen-dependent and -independent promoters and tissue-specific alternative RNA splicing. J Biol Chem. 1996 Jul 19;271(29):17536–17546. doi: 10.1074/jbc.271.29.17536. [DOI] [PubMed] [Google Scholar]
  28. Martell K. J., Seasholtz A. F., Kwak S. P., Clemens K. K., Dixon J. E. hVH-5: a protein tyrosine phosphatase abundant in brain that inactivates mitogen-activated protein kinase. J Neurochem. 1995 Oct;65(4):1823–1833. doi: 10.1046/j.1471-4159.1995.65041823.x. [DOI] [PubMed] [Google Scholar]
  29. Maruta H., Holden J., Sizeland A., D'Abaco G. The residues of Ras and Rap proteins that determine their GAP specificities. J Biol Chem. 1991 Jun 25;266(18):11661–11668. [PubMed] [Google Scholar]
  30. Matsuda A., Matsuzawa S., Nakamura K., Mizuno Y., Kikuchi K. Alterations in activity of protein tyrosine phosphatase SH-PTP1 in autoimmune MRL/mpj-lpr/lpr mice. J Biochem. 1996 Feb;119(2):329–333. doi: 10.1093/oxfordjournals.jbchem.a021243. [DOI] [PubMed] [Google Scholar]
  31. Misra-Press A., Rim C. S., Yao H., Roberson M. S., Stork P. J. A novel mitogen-activated protein kinase phosphatase. Structure, expression, and regulation. J Biol Chem. 1995 Jun 16;270(24):14587–14596. doi: 10.1074/jbc.270.24.14587. [DOI] [PubMed] [Google Scholar]
  32. Mourey R. J., Vega Q. C., Campbell J. S., Wenderoth M. P., Hauschka S. D., Krebs E. G., Dixon J. E. A novel cytoplasmic dual specificity protein tyrosine phosphatase implicated in muscle and neuronal differentiation. J Biol Chem. 1996 Feb 16;271(7):3795–3802. doi: 10.1074/jbc.271.7.3795. [DOI] [PubMed] [Google Scholar]
  33. Muda M., Boschert U., Dickinson R., Martinou J. C., Martinou I., Camps M., Schlegel W., Arkinstall S. MKP-3, a novel cytosolic protein-tyrosine phosphatase that exemplifies a new class of mitogen-activated protein kinase phosphatase. J Biol Chem. 1996 Feb 23;271(8):4319–4326. doi: 10.1074/jbc.271.8.4319. [DOI] [PubMed] [Google Scholar]
  34. Muda M., Boschert U., Smith A., Antonsson B., Gillieron C., Chabert C., Camps M., Martinou I., Ashworth A., Arkinstall S. Molecular cloning and functional characterization of a novel mitogen-activated protein kinase phosphatase, MKP-4. J Biol Chem. 1997 Feb 21;272(8):5141–5151. doi: 10.1074/jbc.272.8.5141. [DOI] [PubMed] [Google Scholar]
  35. Mumby M. C., Walter G. Protein serine/threonine phosphatases: structure, regulation, and functions in cell growth. Physiol Rev. 1993 Oct;73(4):673–699. doi: 10.1152/physrev.1993.73.4.673. [DOI] [PubMed] [Google Scholar]
  36. Muramatsu T., Giri P. R., Higuchi S., Kincaid R. L. Molecular cloning of a calmodulin-dependent phosphatase from murine testis: identification of a developmentally expressed nonneural isoenzyme. Proc Natl Acad Sci U S A. 1992 Jan 15;89(2):529–533. doi: 10.1073/pnas.89.2.529. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Nishio H., Matsui H., Moia L. J., Taketa S., Miyamoto K., Tokuda M., Itano T., Nakahara S., Hatase O. The evidence for post-meiotic expression of a testis-specific isoform of a regulatory subunit of calcineurin using a monoclonal antibody. Biochem Biophys Res Commun. 1992 Sep 16;187(2):828–831. doi: 10.1016/0006-291x(92)91271-q. [DOI] [PubMed] [Google Scholar]
  38. Noguchi T., Metz R., Chen L., Mattéi M. G., Carrasco D., Bravo R. Structure, mapping, and expression of erp, a growth factor-inducible gene encoding a nontransmembrane protein tyrosine phosphatase, and effect of ERP on cell growth. Mol Cell Biol. 1993 Sep;13(9):5195–5205. doi: 10.1128/mcb.13.9.5195. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Ohsugi M., Kuramochi S., Matsuda S., Yamamoto T. Molecular cloning and characterization of a novel cytoplasmic protein-tyrosine phosphatase that is specifically expressed in spermatocytes. J Biol Chem. 1997 Dec 26;272(52):33092–33099. doi: 10.1074/jbc.272.52.33092. [DOI] [PubMed] [Google Scholar]
  40. Propst F., Rosenberg M. P., Vande Woude G. F. Proto-oncogene expression in germ cell development. Trends Genet. 1988 Jul;4(7):183–187. doi: 10.1016/0168-9525(88)90073-x. [DOI] [PubMed] [Google Scholar]
  41. Rohan P. J., Davis P., Moskaluk C. A., Kearns M., Krutzsch H., Siebenlist U., Kelly K. PAC-1: a mitogen-induced nuclear protein tyrosine phosphatase. Science. 1993 Mar 19;259(5102):1763–1766. doi: 10.1126/science.7681221. [DOI] [PubMed] [Google Scholar]
  42. Sheng Z., Charbonneau H. The baculovirus Autographa californica encodes a protein tyrosine phosphatase. J Biol Chem. 1993 Mar 5;268(7):4728–4733. [PubMed] [Google Scholar]
  43. Shima H., Haneji T., Hatano Y., Kasugai I., Sugimura T., Nagao M. Protein phosphatase 1 gamma 2 is associated with nuclei of meiotic cells in rat testis. Biochem Biophys Res Commun. 1993 Jul 30;194(2):930–937. doi: 10.1006/bbrc.1993.1910. [DOI] [PubMed] [Google Scholar]
  44. Sigrist S., Ried G., Lehner C. F. Dmcdc2 kinase is required for both meiotic divisions during Drosophila spermatogenesis and is activated by the Twine/cdc25 phosphatase. Mech Dev. 1995 Oct;53(2):247–260. doi: 10.1016/0925-4773(95)00441-3. [DOI] [PubMed] [Google Scholar]
  45. Sorrentino V., McKinney M. D., Giorgi M., Geremia R., Fleissner E. Expression of cellular protooncogenes in the mouse male germ line: a distinctive 2.4-kilobase pim-1 transcript is expressed in haploid postmeiotic cells. Proc Natl Acad Sci U S A. 1988 Apr;85(7):2191–2195. doi: 10.1073/pnas.85.7.2191. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Theodosiou A. M., Rodrigues N. R., Nesbit M. A., Ambrose H. J., Paterson H., McLellan-Arnold E., Boyd Y., Leversha M. A., Owen N., Blake D. J. A member of the MAP kinase phosphatase gene family in mouse containing a complex trinucleotide repeat in the coding region. Hum Mol Genet. 1996 May;5(5):675–684. doi: 10.1093/hmg/5.5.675. [DOI] [PubMed] [Google Scholar]
  47. Varmuza S., Jurisicova A., Okano K., Hudson J., Boekelheide K., Shipp E. B. Spermiogenesis is impaired in mice bearing a targeted mutation in the protein phosphatase 1cgamma gene. Dev Biol. 1999 Jan 1;205(1):98–110. doi: 10.1006/dbio.1998.9100. [DOI] [PubMed] [Google Scholar]
  48. Yuvaniyama J., Denu J. M., Dixon J. E., Saper M. A. Crystal structure of the dual specificity protein phosphatase VHR. Science. 1996 May 31;272(5266):1328–1331. doi: 10.1126/science.272.5266.1328. [DOI] [PubMed] [Google Scholar]
  49. Zhou G., Denu J. M., Wu L., Dixon J. E. The catalytic role of Cys124 in the dual specificity phosphatase VHR. J Biol Chem. 1994 Nov 11;269(45):28084–28090. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES