Skip to main content
. Author manuscript; available in PMC: 2025 Jun 30.
Published in final edited form as: Stat Med. 2023 Jul 17;42(22):4015–4027. doi: 10.1002/sim.9845

TABLE 3.

Comparison of powers of the regression-based test and the Hotelling T2 test under the second setting (runs:1000).

n Test Variance The number of levels of Z
K = 2
K = 3
K = 4
K = 5
σX2=σY2 σX2σY2 σX2=σY2 σX2σY2 σX2=σY2 σX2σY2 σX2=σY2 σX2σY2
30 Regression Approximate 0.114 0.114 0.288 0.256 0.510 0.511 0.765 0.773
Bootstrapping 0.074 0.075 0.199 0.188 0.402 0.415 0.679 0.687
Hotelling Approximate 0.112 0.109 0.231 0.240 0.390 0.415 0.608 0.636
Bootstrapping 0.069 0.072 0.146 0.144 0.228 0.240 0.401 0.428
60 Regression Approximate 0.151 0.144 0.383 0.415 0.761 0.796 0.959 0.956
Bootstrapping 0.119 0.120 0.330 0.363 0.721 0.743 0.948 0.938
Hotelling Approximate 0.149 0.141 0.325 0.336 0.620 0.639 0.886 0.859
Bootstrapping 0.120 0.117 0.257 0.274 0.538 0.559 0.821 0.784
100 Regression Approximate 0.210 0.224 0.598 0.614 0.955 0.950 1.000 1.000
Bootstrapping 0.183 0.191 0.565 0.569 0.935 0.940 1.000 1.000
Hotelling Approximate 0.208 0.221 0.534 0.518 0.850 0.880 1.000 1.000
Bootstrapping 0.176 0.186 0.463 0.452 0.790 0.810 0.985 1.000
150 Regression Approximate 0.225 0.235 0.770 0.782 0.980 0.982 1.000 1.000
Bootstrapping 0.190 0.200 0.760 0.768 0.980 0.983 1.000 1.000
Hotelling Approximate 0.225 0.230 0.705 0.712 0.965 0.965 1.000 1.000
Bootstrapping 0.190 0.200 0.650 0.635 0.950 0.960 1.000 1.000

Note: The data were generated under the assumptions of regression analysis with a logit link function, in which logθk=1+θk increases by the same amount as the level of Z is increased by one unit.