Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2000 Feb 1;345(Pt 3):467–472.

alpha-crystallin assists the renaturation of glyceraldehyde-3-phosphate dehydrogenase.

E Ganea 1, J J Harding 1
PMCID: PMC1220779  PMID: 10642503

Abstract

alpha-Crystallin, a major lens protein, has many of the properties of a molecular chaperone, but its ability to assist refolding of proteins has been less certain. In the present work it was shown that alpha-crystallin specifically increased the reactivation of guanidine-denatured glyceraldehyde-3-phosphate dehydrogenase with most of the activity being recovered. In the incubation mixture the recovered enzyme activity was partly free but mostly it appeared in a protective complex with alpha-crystallin. The aggregation of the denatured enzyme on dilution from the guanidine solution was prevented. Thus alpha-crystallin not only protects against aggregation and inactivation of enzymes during denaturation, but can also prevent aggregation and assist recovery of the native structure during renaturation.

Full Text

The Full Text of this article is available as a PDF (133.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Das K. P., Surewicz W. K. On the substrate specificity of alpha-crystallin as a molecular chaperone. Biochem J. 1995 Oct 15;311(Pt 2):367–370. doi: 10.1042/bj3110367. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ganea E., Harding J. J. Inhibition of 6-phosphogluconate dehydrogenase by carbamylation and protection by alpha-crystallin, a chaperone-like protein. Biochem Biophys Res Commun. 1996 May 15;222(2):626–631. doi: 10.1006/bbrc.1996.0794. [DOI] [PubMed] [Google Scholar]
  3. Haley D. A., Horwitz J., Stewart P. L. The small heat-shock protein, alphaB-crystallin, has a variable quaternary structure. J Mol Biol. 1998 Mar 20;277(1):27–35. doi: 10.1006/jmbi.1997.1611. [DOI] [PubMed] [Google Scholar]
  4. He R. Q., Li Y. G., Wu X. Q., Li L. Inactivation and conformation changes of the glycated and non-glycated D-glyceraldehyde-3-phosphate dehydrogenase during guanidine-HCl denaturation. Biochim Biophys Acta. 1995 Nov 15;1253(1):47–56. doi: 10.1016/0167-4838(95)00145-k. [DOI] [PubMed] [Google Scholar]
  5. Hendrick J. P., Hartl F. U. Molecular chaperone functions of heat-shock proteins. Annu Rev Biochem. 1993;62:349–384. doi: 10.1146/annurev.bi.62.070193.002025. [DOI] [PubMed] [Google Scholar]
  6. Hook D. W., Harding J. J. Alpha-crystallin acting as a molecular chaperone protects catalase against steroid-induced inactivation. FEBS Lett. 1996 Mar 18;382(3):281–284. doi: 10.1016/0014-5793(96)00134-2. [DOI] [PubMed] [Google Scholar]
  7. Hook D. W., Harding J. J. Inactivation of glyceraldehyde 3-phosphate dehydrogenase by sugars, prednisolone-21-hemisuccinate, cyanate and other small molecules. Biochim Biophys Acta. 1997 Dec 31;1362(2-3):232–242. doi: 10.1016/s0925-4439(97)00084-7. [DOI] [PubMed] [Google Scholar]
  8. Hook D. W., Harding J. J. Molecular chaperones protect catalase against thermal stress. Eur J Biochem. 1997 Jul 1;247(1):380–385. doi: 10.1111/j.1432-1033.1997.00380.x. [DOI] [PubMed] [Google Scholar]
  9. Horwitz J. Alpha-crystallin can function as a molecular chaperone. Proc Natl Acad Sci U S A. 1992 Nov 1;89(21):10449–10453. doi: 10.1073/pnas.89.21.10449. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Jakob U., Gaestel M., Engel K., Buchner J. Small heat shock proteins are molecular chaperones. J Biol Chem. 1993 Jan 25;268(3):1517–1520. [PubMed] [Google Scholar]
  11. Jedziniak J. A., Arredondo L. M., Meys M. Human lens enzyme alterations with age and cataract: glyceraldehyde-3-P dehydrogenase and triose phosphate isomerase. Curr Eye Res. 1986 Feb;5(2):119–126. doi: 10.3109/02713688609015100. [DOI] [PubMed] [Google Scholar]
  12. Jiang R. F., Tsou C. L. Inactivation precedes changes in allosteric properties and conformation of D-glyceraldehyde-3-phosphate dehydrogenase and fructose-1,6-bisphosphatase during denaturation by guanidinium chloride. Biochem J. 1994 Oct 1;303(Pt 1):241–245. doi: 10.1042/bj3030241. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kim K. K., Kim R., Kim S. H. Crystal structure of a small heat-shock protein. Nature. 1998 Aug 6;394(6693):595–599. doi: 10.1038/29106. [DOI] [PubMed] [Google Scholar]
  14. Lee G. J., Roseman A. M., Saibil H. R., Vierling E. A small heat shock protein stably binds heat-denatured model substrates and can maintain a substrate in a folding-competent state. EMBO J. 1997 Feb 3;16(3):659–671. doi: 10.1093/emboj/16.3.659. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Li J., Wang C. C. "Half of the sites" binding of D-glyceraldehyde-3-phosphate dehydrogenase folding intermediate with GroEL. J Biol Chem. 1999 Apr 16;274(16):10790–10794. doi: 10.1074/jbc.274.16.10790. [DOI] [PubMed] [Google Scholar]
  16. Li X. L., Lei X. D., Cai H., Li J., Yang S. L., Wang C. C., Tsou C. L. Binding of a burst-phase intermediate formed in the folding of denatured D-glyceraldehyde-3-phosphate dehydrogenase by chaperonin 60 and 8-anilino-1-naphthalenesulphonic acid. Biochem J. 1998 Apr 15;331(Pt 2):505–511. doi: 10.1042/bj3310505. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Lindner R. A., Kapur A., Carver J. A. The interaction of the molecular chaperone, alpha-crystallin, with molten globule states of bovine alpha-lactalbumin. J Biol Chem. 1997 Oct 31;272(44):27722–27729. doi: 10.1074/jbc.272.44.27722. [DOI] [PubMed] [Google Scholar]
  18. Lubec G., Labudova O., Cairns N., Fountoulakis M. Increased glyceraldehyde 3-phosphate dehydrogenase levels in the brain of patients with Down's syndrome. Neurosci Lett. 1999 Jan 29;260(2):141–145. doi: 10.1016/s0304-3940(98)00952-5. [DOI] [PubMed] [Google Scholar]
  19. Matthews C. R. Pathways of protein folding. Annu Rev Biochem. 1993;62:653–683. doi: 10.1146/annurev.bi.62.070193.003253. [DOI] [PubMed] [Google Scholar]
  20. Merck K. B., Groenen P. J., Voorter C. E., de Haard-Hoekman W. A., Horwitz J., Bloemendal H., de Jong W. W. Structural and functional similarities of bovine alpha-crystallin and mouse small heat-shock protein. A family of chaperones. J Biol Chem. 1993 Jan 15;268(2):1046–1052. [PubMed] [Google Scholar]
  21. Muchowski P. J., Clark J. I. ATP-enhanced molecular chaperone functions of the small heat shock protein human alphaB crystallin. Proc Natl Acad Sci U S A. 1998 Feb 3;95(3):1004–1009. doi: 10.1073/pnas.95.3.1004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Ovãdi J., Telegdi M., Batke J., Keleti T. Functional non-identity of subunits and isolation of active dimers of D-glyceraldehyde-3-phosphate dehydrogenase. Eur J Biochem. 1971 Oct 14;22(3):430–438. doi: 10.1111/j.1432-1033.1971.tb01561.x. [DOI] [PubMed] [Google Scholar]
  23. Ptitsyn O. B. Molten globule and protein folding. Adv Protein Chem. 1995;47:83–229. doi: 10.1016/s0065-3233(08)60546-x. [DOI] [PubMed] [Google Scholar]
  24. Rawat U., Rao M. Interactions of chaperone alpha-crystallin with the molten globule state of xylose reductase. Implications for reconstitution of the active enzyme. J Biol Chem. 1998 Apr 17;273(16):9415–9423. doi: 10.1074/jbc.273.16.9415. [DOI] [PubMed] [Google Scholar]
  25. Sirover M. A. Role of the glycolytic protein, glyceraldehyde-3-phosphate dehydrogenase, in normal cell function and in cell pathology. J Cell Biochem. 1997 Aug 1;66(2):133–140. [PubMed] [Google Scholar]
  26. Velasco P. T., Lukas T. J., Murthy S. N., Duglas-Tabor Y., Garland D. L., Lorand L. Hierarchy of lens proteins requiring protection against heat-induced precipitation by the alpha crystallin chaperone. Exp Eye Res. 1997 Oct;65(4):497–505. doi: 10.1006/exer.1997.0358. [DOI] [PubMed] [Google Scholar]
  27. van Mierlo C. P., van Dongen W. M., Vergeldt F., van Berkel W. J., Steensma E. The equilibrium unfolding of Azotobacter vinelandii apoflavodoxin II occurs via a relatively stable folding intermediate. Protein Sci. 1998 Nov;7(11):2331–2344. doi: 10.1002/pro.5560071110. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. van de Klundert F. A., Smulders R. H., Gijsen M. L., Lindner R. A., Jaenicke R., Carver J. A., de Jong W. W. The mammalian small heat-shock protein Hsp20 forms dimers and is a poor chaperone. Eur J Biochem. 1998 Dec 15;258(3):1014–1021. doi: 10.1046/j.1432-1327.1998.2581014.x. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES