Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2000 Mar 15;346(Pt 3):799–804.

Cloning and characterization of a novel nuclease from shrimp hepatopancreas, and prediction of its active site.

W Y Wang 1, S H Liaw 1, T H Liao 1
PMCID: PMC1220915  PMID: 10698709

Abstract

Approximately 95% of the amino acid sequence of a shrimp (Penaeus japonicus) nuclease was derived from protease-digested peptides. A 1461-base cDNA for the nuclease was amplified and sequenced with degenerate primers based on the amino acid sequence and then specific primers by 3' and 5' RACE (rapid amplification of cDNA ends). It contains an open reading frame encoding a putative 21-residue signal peptide and a 381-residue mature protein. The N-terminus of the enzyme is pyroglutamate, deduced from composition and matrix-assisted laser desorption ionization-time-of-flight MS analyses, and confirmed by a glutamine residue in the cDNA sequence. The enzyme has 11 Cys residues, forming five intramolecular disulphides. The eleventh Cys residue was linked to a thiol compound with an estimated molecular mass of between 500 and 700 Da. A sequence similarity search revealed no homologous proteins but residues 205-255 shared a conserved active-site motif within a distinct group of nucleases. His(211) in this conserved motif was shown to be very important in catalysis by site-specific modification with (14)C-labelled iodoacetate. The shrimp nuclease, previously designated DNase I, does indeed possess a low level of hydrolytic activity towards RNA in the presence of Mg(2+) and Ca(2+). The conservation of functionally important residues during distant evolution might imply that the catalytic mechanisms are similar in these nucleases, which should be classified in one subfamily. Finally, an active-site structure for shrimp nuclease was proposed on the basis of published structural data and the results of mutational and biochemical analyses of Serratia nuclease.

Full Text

The Full Text of this article is available as a PDF (218.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ardelt W., Mikulski S. M., Shogen K. Amino acid sequence of an anti-tumor protein from Rana pipiens oocytes and early embryos. Homology to pancreatic ribonucleases. J Biol Chem. 1991 Jan 5;266(1):245–251. [PubMed] [Google Scholar]
  2. Boix E., Wu Y., Vasandani V. M., Saxena S. K., Ardelt W., Ladner J., Youle R. J. Role of the N terminus in RNase A homologues: differences in catalytic activity, ribonuclease inhibitor interaction and cytotoxicity. J Mol Biol. 1996 Apr 19;257(5):992–1007. doi: 10.1006/jmbi.1996.0218. [DOI] [PubMed] [Google Scholar]
  3. Bustin M., Lin M. C., Stein W. H., Moore S. Activity of the reduced zymogen of streptococcal proteinase. J Biol Chem. 1970 Feb 25;245(4):846–849. [PubMed] [Google Scholar]
  4. CRESTFIELD A. M., MOORE S., STEIN W. H. The preparation and enzymatic hydrolysis of reduced and S-carboxymethylated proteins. J Biol Chem. 1963 Feb;238:622–627. [PubMed] [Google Scholar]
  5. Chang Y. M., Lin S., Liao T. H. Bovine pancreatic deoxyribonuclease F: isoelectric focusing, peptide mapping and primary structure. Biotechnol Appl Biochem. 1994 Feb;19(Pt 1):129–140. [PubMed] [Google Scholar]
  6. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  7. Chou M. Y., Liao T. H. Shrimp hepatopancreatic deoxyribonuclease--purification and characterization as well as comparison with bovine pancreatic deoxyribonuclease. Biochim Biophys Acta. 1990 Nov 9;1036(2):95–100. doi: 10.1016/0304-4165(90)90019-s. [DOI] [PubMed] [Google Scholar]
  8. FERDINAND W., STEIN W. H., MOORE S. AN UNUSUAL DISULFIDE BOND IN STREPTOCOCCAL PROTEINASE. J Biol Chem. 1965 Mar;240:1150–1155. [PubMed] [Google Scholar]
  9. Flick K. E., Jurica M. S., Monnat R. J., Jr, Stoddard B. L. DNA binding and cleavage by the nuclear intron-encoded homing endonuclease I-PpoI. Nature. 1998 Jul 2;394(6688):96–101. doi: 10.1038/27952. [DOI] [PubMed] [Google Scholar]
  10. Friedhoff P., Franke I., Krause K. L., Pingoud A. Cleavage experiments with deoxythymidine 3',5'-bis-(p-nitrophenyl phosphate) suggest that the homing endonuclease I-PpoI follows the same mechanism of phosphodiester bond hydrolysis as the non-specific Serratia nuclease. FEBS Lett. 1999 Jan 25;443(2):209–214. doi: 10.1016/s0014-5793(98)01660-3. [DOI] [PubMed] [Google Scholar]
  11. Friedhoff P., Gimadutdinow O., Pingoud A. Identification of catalytically relevant amino acids of the extracellular Serratia marcescens endonuclease by alignment-guided mutagenesis. Nucleic Acids Res. 1994 Aug 25;22(16):3280–3287. doi: 10.1093/nar/22.16.3280. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Friedhoff P., Kolmes B., Gimadutdinow O., Wende W., Krause K. L., Pingoud A. Analysis of the mechanism of the Serratia nuclease using site-directed mutagenesis. Nucleic Acids Res. 1996 Jul 15;24(14):2632–2639. doi: 10.1093/nar/24.14.2632. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Ho H. C., Liao T. H. Protein structure and gene cloning of Syncephalastrum racemosum nuclease. Biochem J. 1999 Apr 15;339(Pt 2):261–267. [PMC free article] [PubMed] [Google Scholar]
  14. Hsiao Y. M., Ho H. C., Wang W. Y., Tam M. F., Liao T. H. Purification and characterization of tilapia (Oreochromis mossambicus) deoxyribonuclease I--primary structure and cDNA sequence. Eur J Biochem. 1997 Nov 1;249(3):786–791. doi: 10.1111/j.1432-1033.1997.t01-2-00786.x. [DOI] [PubMed] [Google Scholar]
  15. KUNITZ M. Crystalline desoxyribonuclease; isolation and general properties; spectrophotometric method for the measurement of desoxyribonuclease activity. J Gen Physiol. 1950 Mar;33(4):349–362. doi: 10.1085/jgp.33.4.349. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  17. Liao T. H. Bovine pancreatic deoxyribonuclease D. J Biol Chem. 1974 Apr 25;249(8):2354–2356. [PubMed] [Google Scholar]
  18. Liao T. H. Deoxyribonuclease I and its clinical applications. J Formos Med Assoc. 1997 Jul;96(7):481–487. [PubMed] [Google Scholar]
  19. Liao T. H., Salnikow J., Moore S., Stein W. H. Bovine pancreatic deoxyribonuclease A. Isolation of cyanogen bromide peptides; complete covalent structure of the polypeptide chain. J Biol Chem. 1973 Feb 25;248(4):1489–1495. [PubMed] [Google Scholar]
  20. Lin J. L., Wang W. Y., Liao T. H. Thermal inactivation of shrimp deoxyribonuclease with and without sodium dodecyl sulfate. Biochim Biophys Acta. 1994 Dec 14;1209(2):209–214. doi: 10.1016/0167-4838(94)90186-4. [DOI] [PubMed] [Google Scholar]
  21. Lo S. S., Fraser B. A., Liu T. Y. The mixed disulfide in the zymogen of streptococcal proteinase. Characterization and implication for its biosynthesis. J Biol Chem. 1984 Sep 10;259(17):11041–11045. [PubMed] [Google Scholar]
  22. Miller M. D., Krause K. L. Identification of the Serratia endonuclease dimer: structural basis and implications for catalysis. Protein Sci. 1996 Jan;5(1):24–33. doi: 10.1002/pro.5560050104. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Miller M. D., Tanner J., Alpaugh M., Benedik M. J., Krause K. L. 2.1 A structure of Serratia endonuclease suggests a mechanism for binding to double-stranded DNA. Nat Struct Biol. 1994 Jul;1(7):461–468. doi: 10.1038/nsb0794-461. [DOI] [PubMed] [Google Scholar]
  24. Muro-Pastor A. M., Flores E., Herrero A., Wolk C. P. Identification, genetic analysis and characterization of a sugar-non-specific nuclease from the cyanobacterium Anabaena sp. PCC 7120. Mol Microbiol. 1992 Oct;6(20):3021–3030. doi: 10.1111/j.1365-2958.1992.tb01760.x. [DOI] [PubMed] [Google Scholar]
  25. Nestle M., Roberts W. K. An extracellular nuclease from Serratia marcescens. II. Specificity of the enzyme. J Biol Chem. 1969 Oct 10;244(19):5219–5225. [PubMed] [Google Scholar]
  26. Paudel H. K., Liao T. H. Comparison of the three primary structures of deoxyribonuclease isolated from bovine, ovine, and porcine pancreas. Derivation of the amino acid sequence of ovine DNase and revision of the previously published amino acid sequence of bovine DNase. J Biol Chem. 1986 Dec 5;261(34):16012–16017. [PubMed] [Google Scholar]
  27. Paudel H. K., Liao T. H. Purification, characterization, and the complete amino acid sequence of porcine pancreatic deoxyribonuclease. J Biol Chem. 1986 Dec 5;261(34):16006–16011. [PubMed] [Google Scholar]
  28. Polzar B., Mannherz H. G. Nucleotide sequence of a full length cDNA clone encoding the deoxyribonuclease I from the rat parotid gland. Nucleic Acids Res. 1990 Dec 11;18(23):7151–7151. doi: 10.1093/nar/18.23.7151. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Price P. A., Moore S., Stein W. H. Alkylation of a histidine residue at the active site of bovine pancreatic deoxyribonuclease. J Biol Chem. 1969 Feb 10;244(3):924–928. [PubMed] [Google Scholar]
  30. Rosenthal A. L., Lacks S. A. Nuclease detection in SDS-polyacrylamide gel electrophoresis. Anal Biochem. 1977 May 15;80(1):76–90. doi: 10.1016/0003-2697(77)90627-3. [DOI] [PubMed] [Google Scholar]
  31. Shak S., Capon D. J., Hellmiss R., Marsters S. A., Baker C. L. Recombinant human DNase I reduces the viscosity of cystic fibrosis sputum. Proc Natl Acad Sci U S A. 1990 Dec;87(23):9188–9192. doi: 10.1073/pnas.87.23.9188. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Weston S. A., Lahm A., Suck D. X-ray structure of the DNase I-d(GGTATACC)2 complex at 2.3 A resolution. J Mol Biol. 1992 Aug 20;226(4):1237–1256. doi: 10.1016/0022-2836(92)91064-v. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES