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A new family of glycosylphosphatidylinositol-anchored
p(1-3)glucanosyltransferases (Gelp), recently identified and
characterized in the filamentous fungus Aspergillus fumigatus,
showed functional similarity to the Gas/Phr/Epd protein
families, which are involved in yeast morphogenesis. Sequence
comparisons and hydrophobic cluster analysis (HCA) showed
that all the Gas/Phr/Epd/Gel proteins belong to a new
family of glycosylhydrolases, family 72. We confirmed by site-

directed mutagenesis and biochemical analysis that the two
conserved glutamate residues (the putative catalytic residues of
this family, as determined by HCA) are involved in the active site
of this family of glycosylhydrolases.

Key words: Aspergillus fumigatus, GEL protein family, GPI-
anchored protein.

INTRODUCTION

The opportunistic filamentous fungus Aspergillus fumigatus has
been associated with a wide spectrum of diseases in humans [1].
Even with the best anti-fungal agents currently available, the
mortality rate is very high. The fungal cell wall is a structure that
is both essential for the fungus and absent from the mammalian
host, and consequently presents an attractive target for new anti-
fungals [2]. The cell wall of 4. fumigatus is a complex structure
composed mainly of polysaccharides, f(1-3)glucans being the
most abundant [3,4]. In a search for enzymic activity involved in
the modification of £(1-3)glucans in the periplasmic space, a new
p(1-3)glucanosyltransferase (Gellp) has been identified [5]. This
enzyme is able to cleave internally a f(1-3)glucan molecule, and
transfers the newly generated reducing end to the non-reducing
end of another f(1-3)glucan molecule. The generation of a new
p(1-3)linkage between the acceptor and the donor molecule
results in the elongation of #(1-3)glucan. The predicted amino
acid sequence of Gellp presented significant similarity to several
yeast glycosylphosphatidylinositol (GPI)-anchored proteins [6],
including Gaslp of Saccharomyces cerevisiae [7,8], Phrlp and
Phr2p of Candida albicans [9,10] and Epdlp of C. maltosa [11]
(which are involved in yeast morphogenesis), and also Epd2p in
C. maltosa and 013692, P78785 in Schizosaccharomyces pombe,
found in databases, but of unknown function. Gaslp, Phrlp
and Phr2p were shown to display the same p(1-3)glucanosyl-
transferase activity as that of Gellp [6].

Hydrophobic cluster analysis (HCA) [12] has proved to be
useful in the classification of glycoside hydrolases and trans-
glycosidases, and also in the identification of the putative amino
acids in the catalytic sites of carbohydrate-modifying enzymes
[13,14]. HCA, applied to this family of g(1-3)glucanosyl-
transferases, has shown that Gas/Phr/Gel/Epd proteins are all
clustered in a distinct family of glycoside hydrolases (where Gas,
Phr, Gel and Epd are acronyms for glycophospholipid-anchored
surface, pH-regulated, glucan-elongating glucanosyltransferase
and essential for pseudohyphal development, respectively). Using

Gellp as a representative member of this family, we present here
evidence, obtained by site-directed mutagenesis and biochemical
analysis, that the two glutamate residues identified by HCA are
involved in the catalytic site.

MATERIALS AND METHODS
HCA

The HCA method [12] is based primarily on the fundamental
rules underlying the folding of globular proteins (i.e. the partition
between a hydrophobic core and a hydrophilic surface). This
method uses a two-dimensional plot of the protein sequence
obtained after duplication of an unrolled cylinder, in which the
amino acid residues follow an «-helical pattern. In this rep-
resentation, the clusters of contiguous hydrophobic residues
(Val, Ile, Leu, Phe, Met, Tyr, Trp) have been demonstrated to
significantly correspond to the internal sides of regular secondary-
structure elements in globular proteins [15]. HCA is also a
sensitive method for amino-acid-sequence comparison, because
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Figure 1
proteins

Construction of the two mutated Gel1pMut, ,;, and Gel1pMut;,

The fragments ISAB1—Mut1A and Mut1B—ISAB2 were amplified independently, resulting in the
incorporation of a BseAl site and a Leu-160 residue in place of Glu-160. The fragments
ISAB1—Mut2A and Mut2B—ISAB2 were also amplified independently; these incorporated a
Hindlll site and a Phe-261 residue in place of Glu-261. The horizontal line represents the GELT
gene.

Abbreviations used: GPI, glycosylphosphatidylinositol; HCA, hydrophobic cluster analysis; HPAEC, high-performance anion-exchange chromato-

graphy.
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Figure 2 Comparison of the predicted amino acid sequences of Gel1p, Gel2p and Gel3p of A. fumigatus
Phrip and Phr2p of C. albicans, Epd1p and Epd2p in C. maltosa, and P78785 and 013692 in S. pombe

Identical residues are enclosed in black boxes; similar residues are shown by grey-boxed shading. The two catalytic residues are indicated by double asterisks; the conserved cysteine residues

are indicated by an asterisk.
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it is not based solely on the maximization of alignment scores, as
in most classical methods. The analysis involves a comparison of
the size, distribution and shape of the clusters of hydrophobic
residues on the helical representation (for details, see [16,17].
HCA has indeed proved to allow the detection of similarities
between proteins sharing low amino-acid identity (typically
10-209,) [16,17].

Site-directed mutagenesis of Gel1p and construction of the
mutant strain

Plasmid pISAB2 was used for the production of a recombinant,
truncated Gellp,,, lacking the hydrophobic C-terminus [6].
Previous studies have shown that the absence of the C-terminus
partly permits the secretion of the protein in the culture medium,
without altering its enzymic activity [6].

Mutagenesis of amino acid Glu-160

To construct Glu-160-mutated Gellp, two fragments of GELI
were amplified with two sets of primers: a pairing of the forward
primer ISABI (5-TATCTCGAGCCCCCTCCATCAAGGCT-
CGTGACGACGTTACTCCCATCACT-3") and reverse primer
MutlA (5-GTTTCCGGAGAAGAAAGCGAGGGT-3’, and
the forward primer MutlB (5-TTCTCCGGAAACCTCGTTA-
TCAACGATGGCCCTTCC-3") and reverse primer ISAB2 (5'-
GTAGGATCCCTAAGCGCCCTTGGAAGAGGTGGA-3).
ISABI1 is complementary to nts +58 to +99, with an Xhol
(underlined) site incorporated at the 5" end. The primers MutlA
and MutlB were complementary to nts +454 to +473 and
+469 to +501 respectively of the coding region of GELI; for
these primers, the restriction site BseAl (underlined) and a Leu
codon (shown in bold in above sequence), instead of a Glu codon,
were incorporated (Figure 1). The reverse primer ISAB2 is
complementary to nts + 1237 to + 1257 of the coding region,
incorporating an in-frame TAG stop codon and a BamHI site
(underlined in the above sequence) at the 3’-end. Total DNA,
obtained as described previously [19] from strain CBS 144.89 of
A. fumigatus, was used as the template for PCR amplification.
Thirty cycles, consisting of a 1-min melting step at 95 °C, a 1-min
annealing step at 60 °C and 1 min extension at 70 °C, were
performed. The PCR-generated ISAB1-MutlA product was
digested with Xhol and BseAl, whereas the PCR product
Mut1B-ISAB2 was digested with BseAl and BamHI. These two
digested fragments were then cloned into the expression vector
pKJ113 [20], and digested with Xhol and BamHI, generating the
plasmid pMutg,, ;40

Mutagenesis of amino acid Glu-261

To construct the Glu-261-mutated Gellp protein, two frag-
ments of GELI were amplified with two set of primers: the
forward primer ISAB1 with the reverse primer Mut2A (5'-
TAGAAGCTTAGGAAGAGAGGAAGACCGTAGCC-3),
and the forward primer Mut2B (5'-CCTAAGCTTCTACGG-
CTGCAACACCAACAAG-3") with the reverse primer ISAB2.
The primers Mut2A and Mut2B were, respectively, complemen-
tary to nts 754-776 and 784-804 of the coding region, and led
to the incorporation of the HindIII restriction site (underlined
above) and a Phe codon instead of a Glu codon (shown in bold
in above sequence) (Figure 1). Amplification was performed as
described above. The PCR-generated ISAB1-Mut2A product
was digested with X#hol and HindIll, and the PCR product of
Mut2B-ISAB2 was digested with HindIIl and BamHI. These

two digested fragments were cloned into the expression vector
pKJ113 [20] digested with X#hol and BamHI, generating the
plasmid pMut,,, ,.,- DNA sequencing confirmed the specific
mutagenesis of Glu-160 and Glu-261.

Production of recombinant mutated proteins

Pichia pastoris GS115 (Invitrogen, Leek, The Netherlands)
spheroplasts were transformed with pMut,, . Or pMuty, ..,
linearized by EcoRI. Transformants were selected on a histidine-
deficient medium, and screened on minimal-methanol plates for
insertion of the construct in the P. pastoris GS115 genome, as
described previously [20]. Production of GellMut,, 4 and
GellMut,, ., placed under the control of the alcohol oxidase
promoter in P. pastoris, were secreted into the culture medium in
the presence of 0.79, (v/v) methanol [following the manu-
facturer’s instructions (Invitrogen)].

Enzymic analysis of Gel1p and mutated Gel1p

The recombinant Gellp (lacking the attachment of GPI) was
purified as described by Mouyna et al. [6]. Culture filtrates
containing the recombinant GellMut,,, . and GellMut,, .,
proteins were frozen and kept at —20 °C prior to purification.
For the assay of the enzymic activity, purification of the
recombinant proteins was necessary, since endogeneous S(1—
3)glucanase and p(1-3/1-6)glucanosyltransferase activities
[19,21] were always secreted into the culture medium by the yeast
heterologous host. Although released directly in only low
amounts in comparison with the recombinant protein of
interest, their presence would interfere with the determination
of the activity, since these contaminating enzymes acted on the
laminarioligosaccharide substrate and/ or reaction products
(results not shown). Recombinant Gellp was purified as follows:
after dialysis against a 10 mM Tris/HCI buffer (pH 7), the
culture filtrates were applied to an 8§ mm x 75 mm DEAE-
SPW anion-exchange chromatography column (TosoHaas,
Zettachring, Germany) equilibrated with 20 mM Tris/HCI, pH
8, at a flow rate of 0.7 ml/min. The recombinant proteins were
eluted with a NaCl gradient (0-375 mM in 50 min, followed by
375-500 mM in 10 min). A(1-3)Glucanosyltransferase activity
was analysed as previously described [5]. Briefly, the purified
proteins were incubated at concentrations of 0.05-0.16 mg/ml
with 3 mM reduced laminarioligosaccharide G, in a 50 mM
sodium acetate buffer, pH 5.5, at 37 °C. Aliquots of 2.5 ul,
supplemented with 40 1 of 50 mM NaOH, were analysed
sequentially by high-performance anion-exchange chromato-
graphy (HPAEC) with a 4.6 mm x 250 mm CarboPAC-PA1
column (Dionex, Idstein, Germany), as described previously [5].

SDS/PAGE of Gellp, GellMut,, ,,,p and GellMut,, .. D
proteins was performed on a 109, (w/v) separating gel with a
49, stacking gel. Electrotransfer of proteins to a nitrocellulose
membrane (0.2-um pore size, cellulose nitrate; from Schleicher
and Schuell through Ceralabo, Paris, France) was accomplished
at 30 Vin a 50 mM Tris/200 mM glycine/20 9, (v/v) methanol
buffer [22]. The antiserum used for Western blotting analysis
was directed against Gellp. To obtain anti-Gellp, rabbits were
immunized against a peptide INRAKPESYNDVYC), designed
on the basis of the sequence data [6]. Coupling of the peptide via
cysteine with m-maleimidobenzoyl-N-hydroxysuccinimide ester,
immunization of the animal and titre determination of the
antiserum were performed by Eurogentec (Seraing, Belgium).
Immunopurification of the specific anti-peptide antibodies was
accomplished after coupling the peptide with epoxy-activated
Sepharose (Pharmacia, Orsay, France), following the manu-
facturer’s instructions. Immunolabelling of blots was performed
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using the enhanced chemiluminescence (ECL®) Western blotting
detection procedure of Amersham (Les Ulis, France).

RESULTS AND DISCUSSION

The families of Gas/Phr/Epd/Gel proteins share common
characteristics

GELI has been characterized recently [6], and, in addition, two
new members of the GEL families (GEL2 and GEL3) have also
been isolated recently (I. Mouyna, unpublished work). Figure 2
shows the alignment of the new member of Gelp (Gel2p and
Gel3p) with sequences which present significant similarity found
in S. cerevisiae (Gaslp—Gas5p), C. albicans (Phrlp, Phr2p),
C. maltosa (Epdlp, Epd2) and S. pombe (013692 and P78785).

Table 1
C. maltosa and the GEL family proteins of A. fumigatus

Gelp family proteins are organized into the three domains, as
described by Popolo and Vai [23], i.e. (i) an N-terminal catalytic
domain that was further divided into six conserved blocks; (ii) a
cysteine-rich region containing six highly conserved cysteine
residues; and (iii) a serine-rich C-terminal segment and a
hydrophobic C-terminus, characteristic of GPI-anchored pro-
teins [6,23]. The size of all the proteins of this family was variable
(ranging from 452 to 559 amino acids). The levels of identity
observed among all these proteins varied from 28-81 9%, (Table
1). The ‘best’ identities were not associated with gene families
inside a fungal species. For example, the highest percentage of
identity was found between Epdlp and Phr2p from C. maltosa
and C. albicans respectively, whereas only 309, identity
was observed between Gel3p and both Gellp and Gel2p from
A. fumigatus.

Percentages of identity among all the GAS family proteins of S. cerevisiae, the PHR family proteins of C. albicans, the EPD family proteins of

Bold values indicate the highest percentage of homology found for each protein listed in the left column.

GELT GEL2 GEL3 GAST GAS2  GAS3  GAS4  GAS5  PHRI PHR2  EPDI EPD2  P78785 013692
GELT 38 30 37 33 36 49 36 36 33 35 35 35 45
GEL2 30 37 32 46 40 37 35 35 35 36 34 39
GEL3 43 32 28 33 2 4 4 46 39 4 37
GAST 44 33 37 32 55 59 58 52 44 39
GAS2 29 36 31 4 43 ) 40 37 34
GAS3 37 37 33 32 32 32 31 37
GAS4 35 35 36 37 36 37 49
GAS5 33 32 34 32 33 34
PHR1 55 56 74 40 37
PHR2 81 54 39 38
EPD1 57 42 38
P78785 37

30 320
Gell
1EDG

Figure 3 HCA comparison of Gel1 (upper panel) and endoglucanase A of Cl. cellulolyticum (1EDG; bottom panel)

The plots were prepared, edited and analysed as described previously [23]. The symbols ¥, 4, [-], [, coding for proline, glycine, serine and threonine respectively, are used to aid visual
inspection of the plots. The location of the various secondary-structure elements of endoglucanase A was inferred from the three-dimensional structure [27], and is noted at the bottom. The correlation
between the A-strands involved in the (/3/ce)q barrel is shown. The two catalytic residues located at the C-terminal ends of strands 4 and 47 are shown in white lettering on black circles. The

other conserved residues are printed on a grey background.
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Figure 4 HPAEC analysis of products from the incubation of the recombinant Gel1p, and mutated Gel1p proteins Gel1pMut;, ,;, and Gel1pMut;, ,;,, with

reduced laminarioligosaccharides

Samples (3 xg) of respective purified recombinant proteins were incubated with 3 mM reduced laminarioligosaccharide containing 13 glucose units (4-1G13) in 20 gl of 50 mM sodium acetate,
pH 5.5, at 37 °C. Aliquots (2.5 zl) supplemented with 40 I of 50 mM NaOH were analysed by HPLC with a CarboPAC PA-1 column, and a pulsed electrochemical detector. (A) Analysis of product

after 0, 1, 8 and 20 h of incubation with Gel1p. (B) Analysis of products obtained with mutated Gel1 proteins.
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Gellp  Gellp Gellp

Mutl60d Mut26l

sokDa b (HNED- (ENND i“

Figure 5 Western blot of Gel1p and mutated proteins Gel1pMut;, ,;,p and
Gel1pMut,, ,.,p immunolabelled with anti-Gel1p antibody

The same amount of protein (1 «g) was loaded in each lane.

Identification of the catalytic sites of these multigenic family

HCA allows the classification of glycoside hydrolases and
transglycosidases to be made [13,14]. Three-dimensional struc-
tural analysis, as well as HCA of the regions around the catalytic
residues of glycosidases, have shown that several of the sequence-
based families can be grouped in superfamilies or ‘clans’
[14,24,25] sharing not only the same global fold, but also the
same molecular mechanism and the same catalytic machinery.
The largest of these clans, clan GH-A, grouped together families
1, 2, 5, 10, 17, 26, 30, 35, 39, 42, 51 and 53 [14], where the
catalytic acid-base and nucleophilic residues were located re-
spectively at the C-termini of strands 4 and £7 of a common
(B/o)g barrel structure [14,24,25]. Since the Gas/Gel/Phr/Epd
proteins did not display obvious overall similarities to any
of the previously defined families, they were assigned to a new
family, family 72. However, HCA showed that this family also
belongs to clan GH-A. In clan GH-A, hydrolysis occurs with an
overall retention of the anomeric configuration. The A(1-3)-
glucanosyltransferase activities of all members of family 72 are in
perfect agreement with this retaining mechanism. Enzymic hydro-
lysis of the glycosidic bound by retaining glycoside hydrolases
takes place via general acid catalysis that requires two critical
residues, functioning as an acid-base and a nucleophile. For
several representatives of clan GH-A, the catalytic acid—base and
nucleophilic residues have been identified unambigously by site-
directed mutagenesis, mechanism-based inhibitor studies and by
examination of the three-dimensional structure of the protein in
complex with oligosaccharides [25-27].

The HCA plot of a member of family 72, Gellp, was compared
with HCA plots of the endoglucanase A of Clostridium cellulo-
Iyticum, a member of family 5 of the GH-A clan with a known
three-dimensional structure (Brookhaven Protein Databank;
endoglucanase A of Cl. cellulolyticum [28]) (Figure 3). Gellp, like
all the members of the clan GH-A, is described by an HCA plot
typical of proteins with alternating p-strands (short vertical
clusters) and «-helices (longer, more horizontal clusters; Figure
3). With the exact position of the g-strands of the (§/o), barrel
of the endoglucanase A of C. cellulolyticum being known from
the three-dimensional structure [28], these have been readily
traced into Gellp. Although sequence identity between the two
proteins was only approximately 8.5 9, (21 residues conserved in
approx. 250 residues), the correspondence was unambigous, and
its significance was substantiated by the fact that the conserved
residues were all localized around the p-strands of the endo-
glucanase A of C. cellulolyticum, i.e. the regions forming the
core of the endoglucanase A structure (Figure 3). Two glutamate
residues of Gellp were found in the regions corresponding to the
C-terminal ends of strands f-4 and -7 of endoglucanase A.
These glutamate residues, which form the catalytic machinery
(acid—base and nucleophile respectively) of GH-A clan members

© 2000 Biochemical Society

[14,24,25], were also invariant among all members of family 72.
This suggested that residues Glu-160 and Glu-261 of Gellp were
the acid-base and nucleophilic residues responsible for the
transglycosylation mechanism.

In order to confirm biochemically the involvement of Glu-160
and Glu-261 in the active site of Gellp, we constructed mutated
Gellp, where Glu-160 and Glu-261 were replaced with Leu-160
and Phe-261 respectively. Analysis of the enzymic activity of
Gellp and the recombinant Gellp proteins produced in P.
pastoris, GellpMut, ., and GellpMut,,, ,,, is shown in Figure
4. All these recombinant proteins were secreted in the culture
medium in the same amounts, indicating that they are correctly
folded, but no £(1-3)glucanosyltransferase activity was observed
for the mutated proteins GellpMut,,,, ,, and GellpMut,, ,,
(Figure 5). These results confirmed that Glu-160 and Glu-261
were involved in the catalytic site of this A(1-3)glucanosyl-
transferase.

In conclusion, our results demonstrate that Glu-160 and
Glu-261 are located in the catalytic site giving rise to the
p(1-3)glucanosyltransferase activity of family 72 of the glycosyl-
hydrolases, which play a role in fungal morphogenesis. This
work may help in the design of specific inhibitors for this
p(1-3)glucanosyltransferase activity, which could serve as puta-
tive new anti-fungal therapeutic agents.
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