Abstract
Lactoferrin binds to rat hepatic lectin 1 (RHL1), the major subunit of the asialoglycoprotein (ASGP) receptor, with high affinity, by a galactose-independent mechanism. To better understand the molecular basis of this novel interaction, we compared the binding of lactoferrin and asialo-orosomucoid (ASOR) to isolated rat hepatocytes and to purified ASGP receptors as a function of pH, Ca(2+) and receptor acylation. Binding of (125)I-lactoferrin and (125)I-ASOR to isolated rat hepatocytes at 4 degrees C decreased sharply at pH<6, following similar titration curves. Binding of (125)I-lactoferrin and (125)I-ASOR to hepatocytes was Ca(2+)-dependent. Binding increased progressively at > or =300 microM CaCl(2), in the presence of 1 mM EDTA. Monensin treatment of hepatocytes, which causes hepatocytes to accumulate inactive ASGP receptors, reduced surface binding of (125)I-lactoferrin and (125)I-ASOR by 46 and 49%, respectively, with only a 16% loss of immunodetectable receptor protein from the cell surface. Finally, deacylation of purified ASGP receptors in vitro with 1 M hydroxylamine abolished receptor lectin activity as reflected by the loss of (125)I-ASOR binding as well as the complete loss of specific (125)I-lactoferrin binding. Treatment with 1 M Tris had no effect on binding of either ligand. We conclude from these data that galactose-independent lactoferrin binding to the ASGP receptor requires the receptor's carbohydrate-recognition domain to be in an active configuration. An active configuration is promoted by neutral pH and Ca(2+), and also requires the receptor subunits to be acylated.
Full Text
The Full Text of this article is available as a PDF (117.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bennatt D. J., Ling Y. Y., McAbee D. D. Isolated rat hepatocytes bind lactoferrins by the RHL-1 subunit of the asialoglycoprotein receptor in a galactose-independent manner. Biochemistry. 1997 Jul 8;36(27):8367–8376. doi: 10.1021/bi963079m. [DOI] [PubMed] [Google Scholar]
- Bennatt D. J., McAbee D. D. Identification and isolation of a 45-kDa calcium-dependent lactoferrin receptor from rat hepatocytes. Biochemistry. 1997 Jul 8;36(27):8359–8366. doi: 10.1021/bi963078u. [DOI] [PubMed] [Google Scholar]
- Bennett R. M., Kokocinski T. Lactoferrin turnover in man. Clin Sci (Lond) 1979 Nov;57(5):453–460. doi: 10.1042/cs0570453. [DOI] [PubMed] [Google Scholar]
- Brown E. M., Parry R. M., Jr A spectroscopic study of bovine lactoferrin. Biochemistry. 1974 Oct 22;13(22):4560–4565. doi: 10.1021/bi00719a014. [DOI] [PubMed] [Google Scholar]
- Coddeville B., Strecker G., Wieruszeski J. M., Vliegenthart J. F., van Halbeek H., Peter-Katalinić J., Egge H., Spik G. Heterogeneity of bovine lactotransferrin glycans. Characterization of alpha-D-Galp-(1-->3)-beta-D-Gal- and alpha-NeuAc-(2-->6)-beta-D-GalpNAc-(1-->4)- beta-D-GlcNAc-substituted N-linked glycans. Carbohydr Res. 1992 Dec 15;236:145–164. doi: 10.1016/0008-6215(92)85013-p. [DOI] [PubMed] [Google Scholar]
- Crawford S. E., Borensztajn J. Plasma clearance and liver uptake of chylomicron remnants generated by hepatic lipase lipolysis: evidence for a lactoferrin-sensitive and apolipoprotein E-independent pathway. J Lipid Res. 1999 May;40(5):797–805. [PubMed] [Google Scholar]
- Derisbourg P., Wieruszeski J. M., Montreuil J., Spik G. Primary structure of glycans isolated from human leucocyte lactotransferrin. Absence of fucose residues questions the proposed mechanism of hyposideraemia. Biochem J. 1990 Aug 1;269(3):821–825. doi: 10.1042/bj2690821. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Drickamer K. Ca(2+)-dependent sugar recognition by animal lectins. Biochem Soc Trans. 1996 Feb;24(1):146–150. doi: 10.1042/bst0240146. [DOI] [PubMed] [Google Scholar]
- Fraker P. J., Speck J. C., Jr Protein and cell membrane iodinations with a sparingly soluble chloroamide, 1,3,4,6-tetrachloro-3a,6a-diphrenylglycoluril. Biochem Biophys Res Commun. 1978 Feb 28;80(4):849–857. doi: 10.1016/0006-291x(78)91322-0. [DOI] [PubMed] [Google Scholar]
- Hashizume S., Kuroda K., Murakami H. Cell culture assay of biological activity of lactoferrin and transferrin. Methods Enzymol. 1987;147:302–314. doi: 10.1016/0076-6879(87)47120-6. [DOI] [PubMed] [Google Scholar]
- Iobst S. T., Drickamer K. Selective sugar binding to the carbohydrate recognition domains of the rat hepatic and macrophage asialoglycoprotein receptors. J Biol Chem. 1996 Mar 22;271(12):6686–6693. doi: 10.1074/jbc.271.12.6686. [DOI] [PubMed] [Google Scholar]
- Karle H., Hansen N. E., Malmquist J., Karle A. K., Larsson I. Turnover of human lactoferrin in the rabbit. Scand J Haematol. 1979 Oct;23(4):303–312. doi: 10.1111/j.1600-0609.1979.tb02865.x. [DOI] [PubMed] [Google Scholar]
- Kolatkar A. R., Leung A. K., Isecke R., Brossmer R., Drickamer K., Weis W. I. Mechanism of N-acetylgalactosamine binding to a C-type animal lectin carbohydrate-recognition domain. J Biol Chem. 1998 Jul 31;273(31):19502–19508. doi: 10.1074/jbc.273.31.19502. [DOI] [PubMed] [Google Scholar]
- Levay P. F., Viljoen M. Lactoferrin: a general review. Haematologica. 1995 May-Jun;80(3):252–267. [PubMed] [Google Scholar]
- Loeb J. A., Drickamer K. Conformational changes in the chicken receptor for endocytosis of glycoproteins. Modulation of ligand-binding activity by Ca2+ and pH. J Biol Chem. 1988 Jul 15;263(20):9752–9760. [PubMed] [Google Scholar]
- Lönnerdal B., Iyer S. Lactoferrin: molecular structure and biological function. Annu Rev Nutr. 1995;15:93–110. doi: 10.1146/annurev.nu.15.070195.000521. [DOI] [PubMed] [Google Scholar]
- McAbee D. D., Esbensen K. Binding and endocytosis of apo- and holo-lactoferrin by isolated rat hepatocytes. J Biol Chem. 1991 Dec 15;266(35):23624–23631. [PubMed] [Google Scholar]
- McAbee D. D., Jiang X. Copper and zinc ions differentially block asialoglycoprotein receptor-mediated endocytosis in isolated rat hepatocytes. J Biol Chem. 1999 May 21;274(21):14750–14758. doi: 10.1074/jbc.274.21.14750. [DOI] [PubMed] [Google Scholar]
- McAbee D. D., Lear M. C., Weigel P. H. Total cellular activity and distribution of a subpopulation of galactosyl receptors in isolated rat hepatocytes are differentially affected by microtubule drugs, monensin, low temperature, and chloroquine. J Cell Biochem. 1991 Jan;45(1):59–68. doi: 10.1002/jcb.240450113. [DOI] [PubMed] [Google Scholar]
- McAbee D. D., Ling Y. Y., Stich C. Iron loading of isolated rat hepatocytes inhibits asialoglycoprotein receptor dynamics and induces formation of rat hepatic lectin-1 [correction of leptin-1] (RHL-1) oligomers. Biochem J. 1998 May 1;331(Pt 3):719–726. doi: 10.1042/bj3310719. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McAbee D. D., Nowatzke W., Oehler C., Sitaram M., Sbaschnig E., Opferman J. T., Carr J., Esbensen K. Endocytosis and degradation of bovine apo- and holo-lactoferrin by isolated rat hepatocytes are mediated by recycling calcium-dependent binding sites. Biochemistry. 1993 Dec 14;32(49):13749–13760. doi: 10.1021/bi00212a046. [DOI] [PubMed] [Google Scholar]
- McAbee D. D., Weigel P. H. ATP depletion causes a reversible redistribution and inactivation of a subpopulation of galactosyl receptors in isolated rat hepatocytes. J Biol Chem. 1987 Feb 15;262(5):1942–1945. [PubMed] [Google Scholar]
- McAbee D. D., Weigel P. H. ATP-dependent inactivation and reactivation of constitutively recycling galactosyl receptors in isolated rat hepatocytes. Biochemistry. 1988 Mar 22;27(6):2061–2069. doi: 10.1021/bi00406a037. [DOI] [PubMed] [Google Scholar]
- Meilinger M., Haumer M., Szakmary K. A., Steinböck F., Scheiber B., Goldenberg H., Huettinger M. Removal of lactoferrin from plasma is mediated by binding to low density lipoprotein receptor-related protein/alpha 2-macroglobulin receptor and transport to endosomes. FEBS Lett. 1995 Feb 20;360(1):70–74. doi: 10.1016/0014-5793(95)00082-k. [DOI] [PubMed] [Google Scholar]
- Peen E., Johansson A., Engquist M., Skogh T. Hepatic and extrahepatic clearance of circulating human lactoferrin: an experimental study in rat. Eur J Haematol. 1998 Sep;61(3):151–159. doi: 10.1111/j.1600-0609.1998.tb01078.x. [DOI] [PubMed] [Google Scholar]
- Pricer W. E., Jr, Ashwell G. The binding of desialylated glycoproteins by plasma membranes of rat liver. J Biol Chem. 1971 Aug 10;246(15):4825–4833. [PubMed] [Google Scholar]
- Ray D. A., Weigel P. H. A new competition assay for the solubilized hepatic galactosyl receptor. Anal Biochem. 1985 Feb 15;145(1):37–46. doi: 10.1016/0003-2697(85)90323-9. [DOI] [PubMed] [Google Scholar]
- Schachter H., Jabbal I., Hudgin R. L., Pinteric L., McGuire E. J., Roseman S. Intracellular localization of liver sugar nucleotide glycoprotein glycosyltransferases in a Golgi-rich fraction. J Biol Chem. 1970 Mar 10;245(5):1090–1100. [PubMed] [Google Scholar]
- Seglen P. O. Preparation of rat liver cells. 3. Enzymatic requirements for tissue dispersion. Exp Cell Res. 1973 Dec;82(2):391–398. doi: 10.1016/0014-4827(73)90357-1. [DOI] [PubMed] [Google Scholar]
- Weigel P. H. Characterization of the asialoglycoprotein receptor on isolated rat hepatocytes. J Biol Chem. 1980 Jul 10;255(13):6111–6120. [PubMed] [Google Scholar]
- Weigel P. H., Medh J. D., Oka J. A. A novel cycle involving fatty acyl-coenzyme A regulates asialoglycoprotein receptor activity in permeable hepatocytes. Mol Biol Cell. 1994 Feb;5(2):227–235. doi: 10.1091/mbc.5.2.227. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Willnow T. E., Goldstein J. L., Orth K., Brown M. S., Herz J. Low density lipoprotein receptor-related protein and gp330 bind similar ligands, including plasminogen activator-inhibitor complexes and lactoferrin, an inhibitor of chylomicron remnant clearance. J Biol Chem. 1992 Dec 25;267(36):26172–26180. [PubMed] [Google Scholar]
- Zeng F. Y., Kaphalia B. S., Ansari G. A., Weigel P. H. Fatty acylation of the rat asialoglycoprotein receptor. The three subunits from active receptors contain covalently bound palmitate and stearate. J Biol Chem. 1995 Sep 8;270(36):21382–21387. doi: 10.1074/jbc.270.36.21382. [DOI] [PubMed] [Google Scholar]
- Zeng F. Y., Oka J. A., Weigel P. H. The human asialoglycoprotein receptor is palmitoylated and fatty deacylation causes inactivation of state 2 receptors. Biochem Biophys Res Commun. 1996 Jan 5;218(1):325–330. doi: 10.1006/bbrc.1996.0057. [DOI] [PubMed] [Google Scholar]
- Zeng F. Y., Weigel P. H. Fatty acylation of the rat and human asialoglycoprotein receptors. A conserved cytoplasmic cysteine residue is acylated in all receptor subunits. J Biol Chem. 1996 Dec 13;271(50):32454–32460. doi: 10.1074/jbc.271.50.32454. [DOI] [PubMed] [Google Scholar]
- Zeng F. Y., Weigel P. H. Hydroxylamine treatment differentially inactivates purified rat hepatic asialoglycoprotein receptors and distinguishes two receptor populations. J Biol Chem. 1995 Sep 8;270(36):21388–21395. doi: 10.1074/jbc.270.36.21388. [DOI] [PubMed] [Google Scholar]
- Ziere G. J., Kruijt J. K., Bijsterbosch M. K., van Berkel T. J. Recognition of lactoferrin and aminopeptidase M-modified lactoferrin by the liver: involvement of proteoglycans and the remnant receptor. Biochem J. 1996 Jan 1;313(Pt 1):289–295. doi: 10.1042/bj3130289. [DOI] [PMC free article] [PubMed] [Google Scholar]