Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2000 Sep 1;350(Pt 2):369–379.

Cloning, post-translational modifications, heterologous expression and ligand-binding of boar salivary lipocalin.

D Loebel 1, A Scaloni 1, S Paolini 1, C Fini 1, L Ferrara 1, H Breer 1, P Pelosi 1
PMCID: PMC1221263  PMID: 10947950

Abstract

Boar submaxillary glands produce the sex-specific salivary lipocalin (SAL), which binds steroidal sex pheromones as endogenous ligands. The cDNA encoding SAL was cloned and sequenced. From a single individual, two protein isoforms, differing in three amino acid residues, were purified and structurally characterized by a combined Edman degradation/MS approach. These experiments ascertained that the mature polypeptide is composed of 168 amino acid residues, that one of the three putative glycosylation sites is post-translationally modified and the structure of the bound glycosidic moieties. Two of the cysteine residues are paired together in a disulphide bridge, whereas the remaining two occur as free thiols. SAL bears sequence similarity to other lipocalins; on this basis, a three-dimensional model of the protein has been built. A SAL isoform was expressed in Escherichia coli in good yields. Protein chemistry and CD experiments verified that the recombinant product shows the same redox state at the cysteine residues and that the same conformation is observed as in the natural protein, thus suggesting similar folding. Binding experiments on natural and recombinant SAL were performed with the fluorescent probe 1-aminoanthracene, which was efficiently displaced by the steroidal sex pheromone, as well as by several odorants.

Full Text

The Full Text of this article is available as a PDF (243.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andrade M. A., Chacón P., Merelo J. J., Morán F. Evaluation of secondary structure of proteins from UV circular dichroism spectra using an unsupervised learning neural network. Protein Eng. 1993 Jun;6(4):383–390. doi: 10.1093/protein/6.4.383. [DOI] [PubMed] [Google Scholar]
  2. Angeli S., Ceron F., Scaloni A., Monti M., Monteforti G., Minnocci A., Petacchi R., Pelosi P. Purification, structural characterization, cloning and immunocytochemical localization of chemoreception proteins from Schistocerca gregaria. Eur J Biochem. 1999 Jun;262(3):745–754. doi: 10.1046/j.1432-1327.1999.00438.x. [DOI] [PubMed] [Google Scholar]
  3. Bacchini A., Gaetani E., Cavaggioni A. Pheromone binding proteins of the mouse, Mus musculus. Experientia. 1992 Apr 15;48(4):419–421. doi: 10.1007/BF01923448. [DOI] [PubMed] [Google Scholar]
  4. Bianchet M. A., Bains G., Pelosi P., Pevsner J., Snyder S. H., Monaco H. L., Amzel L. M. The three-dimensional structure of bovine odorant binding protein and its mechanism of odor recognition. Nat Struct Biol. 1996 Nov;3(11):934–939. doi: 10.1038/nsb1196-934. [DOI] [PubMed] [Google Scholar]
  5. Booth W. D., White C. A. The isolation, purification and some properties of pheromaxein, the pheromonal steroid-binding protein, in porcine submaxillary glands and saliva. J Endocrinol. 1988 Jul;118(1):47–57. doi: 10.1677/joe.0.1180047. [DOI] [PubMed] [Google Scholar]
  6. Booth W. D., von Glos K. I. Pheromaxein, the pheromonal steroid-binding protein, is a major protein synthesized in porcine submaxillary salivary glands. J Endocrinol. 1991 Feb;128(2):205–212. doi: 10.1677/joe.0.1280205. [DOI] [PubMed] [Google Scholar]
  7. Böcskei Z., Groom C. R., Flower D. R., Wright C. E., Phillips S. E., Cavaggioni A., Findlay J. B., North A. C. Pheromone binding to two rodent urinary proteins revealed by X-ray crystallography. Nature. 1992 Nov 12;360(6400):186–188. doi: 10.1038/360186a0. [DOI] [PubMed] [Google Scholar]
  8. Cavaggioni A., Findlay J. B., Tirindelli R. Ligand binding characteristics of homologous rat and mouse urinary proteins and pyrazine-binding protein of calf. Comp Biochem Physiol B. 1990;96(3):513–520. doi: 10.1016/0305-0491(90)90049-y. [DOI] [PubMed] [Google Scholar]
  9. Dinh B. L., Tremblay A., Dufour D. Immunochemical study on rat urinary proteins: their relation to serum and kidney proteins (chromatographic separation of the major urinary protein). J Immunol. 1965 Sep;95(3):574–582. [PubMed] [Google Scholar]
  10. Engler-Blum G., Meier M., Frank J., Müller G. A. Reduction of background problems in nonradioactive northern and Southern blot analyses enables higher sensitivity than 32P-based hybridizations. Anal Biochem. 1993 May 1;210(2):235–244. doi: 10.1006/abio.1993.1189. [DOI] [PubMed] [Google Scholar]
  11. Finlayson J. S., Asofsky R., Potter M., Runner C. C. Major urinary protein complex of normal mice: origin. Science. 1965 Aug 27;149(3687):981–982. doi: 10.1126/science.149.3687.981. [DOI] [PubMed] [Google Scholar]
  12. Flower D. R. The lipocalin protein family: structure and function. Biochem J. 1996 Aug 15;318(Pt 1):1–14. doi: 10.1042/bj3180001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Freitag J., Beck A., Ludwig G., von Buchholtz L., Breer H. On the origin of the olfactory receptor family: receptor genes of the jawless fish (Lampetra fluviatilis). Gene. 1999 Jan 21;226(2):165–174. doi: 10.1016/s0378-1119(98)00575-7. [DOI] [PubMed] [Google Scholar]
  14. Ganni M., Garibotti M., Scaloni A., Pucci P., Pelosi P. Microheterogeneity of odorant-binding proteins in the porcupine revealed by N-terminal sequencing and mass spectrometry. Comp Biochem Physiol B Biochem Mol Biol. 1997 Jun;117(2):287–291. doi: 10.1016/s0305-0491(97)00089-8. [DOI] [PubMed] [Google Scholar]
  15. Gao F., Endo H., Yamamoto M. Length heterogeneity in rat salivary gland alpha 2 mu globulin mRNAs: multiple splice-acceptors and polyadenylation sites. Nucleic Acids Res. 1989 Jun 26;17(12):4629–4636. doi: 10.1093/nar/17.12.4629. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Garibotti M., Navarrini A., Pisanelli A. M., Pelosi P. Three odorant-binding proteins from rabbit nasal mucosa. Chem Senses. 1997 Aug;22(4):383–390. doi: 10.1093/chemse/22.4.383. [DOI] [PubMed] [Google Scholar]
  17. Gregoire C., Rosinski-Chupin I., Rabillon J., Alzari P. M., David B., Dandeu J. P. cDNA cloning and sequencing reveal the major horse allergen Equ c1 to be a glycoprotein member of the lipocalin superfamily. J Biol Chem. 1996 Dec 20;271(51):32951–32959. doi: 10.1074/jbc.271.51.32951. [DOI] [PubMed] [Google Scholar]
  18. Henzel W. J., Rodriguez H., Singer A. G., Stults J. T., Macrides F., Agosta W. C., Niall H. The primary structure of aphrodisin. J Biol Chem. 1988 Nov 15;263(32):16682–16687. [PubMed] [Google Scholar]
  19. Herrada G., Dulac C. A novel family of putative pheromone receptors in mammals with a topographically organized and sexually dimorphic distribution. Cell. 1997 Aug 22;90(4):763–773. doi: 10.1016/s0092-8674(00)80536-x. [DOI] [PubMed] [Google Scholar]
  20. Jemiolo B., Xie T. M., Novotny M. Urine marking in male mice: responses to natural and synthetic chemosignals. Physiol Behav. 1992 Sep;52(3):521–526. doi: 10.1016/0031-9384(92)90341-x. [DOI] [PubMed] [Google Scholar]
  21. Katkov T., Booth W. D., Gower D. B. The metabolism of 16-androstenes in boar salivary glands. Biochim Biophys Acta. 1972 Aug 11;270(4):546–556. doi: 10.1016/0005-2760(72)90120-8. [DOI] [PubMed] [Google Scholar]
  22. Krieger J., Schmitt A., Löbel D., Gudermann T., Schultz G., Breer H., Boekhoff I. Selective activation of G protein subtypes in the vomeronasal organ upon stimulation with urine-derived compounds. J Biol Chem. 1999 Feb 19;274(8):4655–4662. doi: 10.1074/jbc.274.8.4655. [DOI] [PubMed] [Google Scholar]
  23. Kyhse-Andersen J. Electroblotting of multiple gels: a simple apparatus without buffer tank for rapid transfer of proteins from polyacrylamide to nitrocellulose. J Biochem Biophys Methods. 1984 Dec;10(3-4):203–209. doi: 10.1016/0165-022x(84)90040-x. [DOI] [PubMed] [Google Scholar]
  24. Löbel D., Marchese S., Krieger J., Pelosi P., Breer H. Subtypes of odorant-binding proteins--heterologous expression and ligand binding. Eur J Biochem. 1998 Jun 1;254(2):318–324. doi: 10.1046/j.1432-1327.1998.2540318.x. [DOI] [PubMed] [Google Scholar]
  25. Marchese S., Pes D., Scaloni A., Carbone V., Pelosi P. Lipocalins of boar salivary glands binding odours and pheromones. Eur J Biochem. 1998 Mar 15;252(3):563–568. doi: 10.1046/j.1432-1327.1998.2520563.x. [DOI] [PubMed] [Google Scholar]
  26. Matsunami H., Buck L. B. A multigene family encoding a diverse array of putative pheromone receptors in mammals. Cell. 1997 Aug 22;90(4):775–784. doi: 10.1016/s0092-8674(00)80537-1. [DOI] [PubMed] [Google Scholar]
  27. Mucignat-Caretta C., Caretta A., Cavaggioni A. Acceleration of puberty onset in female mice by male urinary proteins. J Physiol. 1995 Jul 15;486(Pt 2):517–522. doi: 10.1113/jphysiol.1995.sp020830. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Paolini S., Tanfani F., Fini C., Bertoli E., Paolo Pelosi Porcine odorant-binding protein: structural stability and ligand affinities measured by fourier-transform infrared spectroscopy and fluorescence spectroscopy. Biochim Biophys Acta. 1999 Apr 12;1431(1):179–188. doi: 10.1016/s0167-4838(99)00037-0. [DOI] [PubMed] [Google Scholar]
  29. Peitsch M. C. ProMod and Swiss-Model: Internet-based tools for automated comparative protein modelling. Biochem Soc Trans. 1996 Feb;24(1):274–279. doi: 10.1042/bst0240274. [DOI] [PubMed] [Google Scholar]
  30. Pelosi P. Odorant-binding proteins. Crit Rev Biochem Mol Biol. 1994;29(3):199–228. doi: 10.3109/10409239409086801. [DOI] [PubMed] [Google Scholar]
  31. Pelosi P. Perireceptor events in olfaction. J Neurobiol. 1996 May;30(1):3–19. doi: 10.1002/(SICI)1097-4695(199605)30:1<3::AID-NEU2>3.0.CO;2-A. [DOI] [PubMed] [Google Scholar]
  32. Pes D., Mameli M., Andreini I., Krieger J., Weber M., Breer H., Pelosi P. Cloning and expression of odorant-binding proteins Ia and Ib from mouse nasal tissue. Gene. 1998 May 28;212(1):49–55. doi: 10.1016/s0378-1119(98)00131-0. [DOI] [PubMed] [Google Scholar]
  33. Pes D., Pelosi P. Odorant-binding proteins of the mouse. Comp Biochem Physiol B Biochem Mol Biol. 1995 Nov;112(3):471–479. doi: 10.1016/0305-0491(95)00063-1. [DOI] [PubMed] [Google Scholar]
  34. Ryba N. J., Tirindelli R. A new multigene family of putative pheromone receptors. Neuron. 1997 Aug;19(2):371–379. doi: 10.1016/s0896-6273(00)80946-0. [DOI] [PubMed] [Google Scholar]
  35. Shahan K., Denaro M., Gilmartin M., Shi Y., Derman E. Expression of six mouse major urinary protein genes in the mammary, parotid, sublingual, submaxillary, and lachrymal glands and in the liver. Mol Cell Biol. 1987 May;7(5):1947–1954. doi: 10.1128/mcb.7.5.1947. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Shaw P. H., Held W. A., Hastie N. D. The gene family for major urinary proteins: expression in several secretory tissues of the mouse. Cell. 1983 Mar;32(3):755–761. doi: 10.1016/0092-8674(83)90061-2. [DOI] [PubMed] [Google Scholar]
  37. Singer A. G., Macrides F., Clancy A. N., Agosta W. C. Purification and analysis of a proteinaceous aphrodisiac pheromone from hamster vaginal discharge. J Biol Chem. 1986 Oct 5;261(28):13323–13326. [PubMed] [Google Scholar]
  38. Spielman A. I., Zeng X. N., Leyden J. J., Preti G. Proteinaceous precursors of human axillary odor: isolation of two novel odor-binding proteins. Experientia. 1995 Jan 15;51(1):40–47. [PubMed] [Google Scholar]
  39. Spinelli S., Ramoni R., Grolli S., Bonicel J., Cambillau C., Tegoni M. The structure of the monomeric porcine odorant binding protein sheds light on the domain swapping mechanism. Biochemistry. 1998 Jun 2;37(22):7913–7918. doi: 10.1021/bi980179e. [DOI] [PubMed] [Google Scholar]
  40. Tegoni M., Ramoni R., Bignetti E., Spinelli S., Cambillau C. Domain swapping creates a third putative combining site in bovine odorant binding protein dimer. Nat Struct Biol. 1996 Oct;3(10):863–867. doi: 10.1038/nsb1096-863. [DOI] [PubMed] [Google Scholar]
  41. Thompson J. D., Higgins D. G., Gibson T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994 Nov 11;22(22):4673–4680. doi: 10.1093/nar/22.22.4673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Utsumi M., Ohno K., Kawasaki Y., Tamura M., Kubo T., Tohyama M. Expression of major urinary protein genes in the nasal glands associated with general olfaction. J Neurobiol. 1999 May;39(2):227–236. doi: 10.1002/(sici)1097-4695(199905)39:2<227::aid-neu7>3.0.co;2-4. [DOI] [PubMed] [Google Scholar]
  43. Zeng C., Spielman A. I., Vowels B. R., Leyden J. J., Biemann K., Preti G. A human axillary odorant is carried by apolipoprotein D. Proc Natl Acad Sci U S A. 1996 Jun 25;93(13):6626–6630. doi: 10.1073/pnas.93.13.6626. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES