Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2000 Sep 15;350(Pt 3):925–932.

The beta-subunit of the hepatocyte growth factor/scatter factor (HGF/SF) receptor phosphorylates and associates with CrkII: expression of CrkII enhances HGF/SF-induced mitogenesis.

S M Riordan 1, S Lidder 1, R Williams 1, G G Skouteris 1
PMCID: PMC1221328  PMID: 10970810

Abstract

CrkII, a 40 kDa adaptor possessing a Src homology (SH)2 domain followed by two SH3 domains, although not endowed with catalytic activity, participates in intracellular signalling, presumably by activating the Ras pathway. CrkII was found to be phosphorylated in response to hepatocyte growth factor/scatter factor (HGF/SF) and to associate with the beta-subunit of the HGF receptor (MET). CrkII associated with p(145betaMET) via its SH2 domain. Growth-factor-receptor-bound protein 2 (Grb2) co-immunoprecipitated with CrkII species. By transient transfection of A431 human epidermoid carcinoma cells with wild-type and dominant-negative Grb2 expression constructs lacking either the SH2 or SH3 domains, we have concluded that Grb2 does not contribute to the 'presentation' of CrkII to p(145betaMET). Overexpression of wild-type CrkII in A431 cells enhanced HGF/SF-induced proliferation, while a CrkII dominant-negative mutant lacking the SH2 domain prevented a similar proliferating response to HGF/SF. The effect of CrkII on HGF/SF-induced proliferation was also abolished in cells co-expressing CrkII and Son-of-sevenless lacking the guanine exchange domain, suggesting that CrkII is likely to induce cell proliferation partly via the Ras/mitogen-activated protein kinase route.

Full Text

The Full Text of this article is available as a PDF (211.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bardelli A., Maina F., Gout I., Fry M. J., Waterfield M. D., Comoglio P. M., Ponzetto C. Autophosphorylation promotes complex formation of recombinant hepatocyte growth factor receptor with cytoplasmic effectors containing SH2 domains. Oncogene. 1992 Oct;7(10):1973–1978. [PubMed] [Google Scholar]
  2. Beitner-Johnson D., LeRoith D. Insulin-like growth factor-I stimulates tyrosine phosphorylation of endogenous c-Crk. J Biol Chem. 1995 Mar 10;270(10):5187–5190. doi: 10.1074/jbc.270.10.5187. [DOI] [PubMed] [Google Scholar]
  3. Bussolino F., Di Renzo M. F., Ziche M., Bocchietto E., Olivero M., Naldini L., Gaudino G., Tamagnone L., Coffer A., Comoglio P. M. Hepatocyte growth factor is a potent angiogenic factor which stimulates endothelial cell motility and growth. J Cell Biol. 1992 Nov;119(3):629–641. doi: 10.1083/jcb.119.3.629. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chen C., Okayama H. High-efficiency transformation of mammalian cells by plasmid DNA. Mol Cell Biol. 1987 Aug;7(8):2745–2752. doi: 10.1128/mcb.7.8.2745. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cussac D., Frech M., Chardin P. Binding of the Grb2 SH2 domain to phosphotyrosine motifs does not change the affinity of its SH3 domains for Sos proline-rich motifs. EMBO J. 1994 Sep 1;13(17):4011–4021. doi: 10.1002/j.1460-2075.1994.tb06717.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dolfi F., Garcia-Guzman M., Ojaniemi M., Nakamura H., Matsuda M., Vuori K. The adaptor protein Crk connects multiple cellular stimuli to the JNK signaling pathway. Proc Natl Acad Sci U S A. 1998 Dec 22;95(26):15394–15399. doi: 10.1073/pnas.95.26.15394. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Feller S. M., Knudsen B., Hanafusa H. Cellular proteins binding to the first Src homology 3 (SH3) domain of the proto-oncogene product c-Crk indicate Crk-specific signaling pathways. Oncogene. 1995 Apr 20;10(8):1465–1473. [PubMed] [Google Scholar]
  8. Hartmann G., Weidner K. M., Schwarz H., Birchmeier W. The motility signal of scatter factor/hepatocyte growth factor mediated through the receptor tyrosine kinase met requires intracellular action of Ras. J Biol Chem. 1994 Sep 2;269(35):21936–21939. [PubMed] [Google Scholar]
  9. Hempstead B. L., Birge R. B., Fajardo J. E., Glassman R., Mahadeo D., Kraemer R., Hanafusa H. Expression of the v-crk oncogene product in PC12 cells results in rapid differentiation by both nerve growth factor- and epidermal growth factor-dependent pathways. Mol Cell Biol. 1994 Mar;14(3):1964–1971. doi: 10.1128/mcb.14.3.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Husson H., Mograbi B., Schmid-Antomarchi H., Fischer S., Rossi B. CSF-1 stimulation induces the formation of a multiprotein complex including CSF-1 receptor, c-Cbl, PI 3-kinase, Crk-II and Grb2. Oncogene. 1997 May 15;14(19):2331–2338. doi: 10.1038/sj.onc.1201074. [DOI] [PubMed] [Google Scholar]
  11. Kiyokawa E., Hashimoto Y., Kobayashi S., Sugimura H., Kurata T., Matsuda M. Activation of Rac1 by a Crk SH3-binding protein, DOCK180. Genes Dev. 1998 Nov 1;12(21):3331–3336. doi: 10.1101/gad.12.21.3331. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Lemmon M. A., Ladbury J. E., Mandiyan V., Zhou M., Schlessinger J. Independent binding of peptide ligands to the SH2 and SH3 domains of Grb2. J Biol Chem. 1994 Dec 16;269(50):31653–31658. [PubMed] [Google Scholar]
  13. Li N., Batzer A., Daly R., Yajnik V., Skolnik E., Chardin P., Bar-Sagi D., Margolis B., Schlessinger J. Guanine-nucleotide-releasing factor hSos1 binds to Grb2 and links receptor tyrosine kinases to Ras signalling. Nature. 1993 May 6;363(6424):85–88. doi: 10.1038/363085a0. [DOI] [PubMed] [Google Scholar]
  14. Maestrini E., Tamagnone L., Longati P., Cremona O., Gulisano M., Bione S., Tamanini F., Neel B. G., Toniolo D., Comoglio P. M. A family of transmembrane proteins with homology to the MET-hepatocyte growth factor receptor. Proc Natl Acad Sci U S A. 1996 Jan 23;93(2):674–678. doi: 10.1073/pnas.93.2.674. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Matsuda M., Tanaka S., Nagata S., Kojima A., Kurata T., Shibuya M. Two species of human CRK cDNA encode proteins with distinct biological activities. Mol Cell Biol. 1992 Aug;12(8):3482–3489. doi: 10.1128/mcb.12.8.3482. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Mayer B. J., Baltimore D. Signalling through SH2 and SH3 domains. Trends Cell Biol. 1993 Jan;3(1):8–13. doi: 10.1016/0962-8924(93)90194-6. [DOI] [PubMed] [Google Scholar]
  17. Mayer B. J., Hamaguchi M., Hanafusa H. A novel viral oncogene with structural similarity to phospholipase C. Nature. 1988 Mar 17;332(6161):272–275. doi: 10.1038/332272a0. [DOI] [PubMed] [Google Scholar]
  18. Meisner H., Conway B. R., Hartley D., Czech M. P. Interactions of Cbl with Grb2 and phosphatidylinositol 3'-kinase in activated Jurkat cells. Mol Cell Biol. 1995 Jul;15(7):3571–3578. doi: 10.1128/mcb.15.7.3571. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Naldini L., Vigna E., Narsimhan R. P., Gaudino G., Zarnegar R., Michalopoulos G. K., Comoglio P. M. Hepatocyte growth factor (HGF) stimulates the tyrosine kinase activity of the receptor encoded by the proto-oncogene c-MET. Oncogene. 1991 Apr;6(4):501–504. [PubMed] [Google Scholar]
  20. Naldini L., Weidner K. M., Vigna E., Gaudino G., Bardelli A., Ponzetto C., Narsimhan R. P., Hartmann G., Zarnegar R., Michalopoulos G. K. Scatter factor and hepatocyte growth factor are indistinguishable ligands for the MET receptor. EMBO J. 1991 Oct;10(10):2867–2878. doi: 10.1002/j.1460-2075.1991.tb07836.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Nguyen L., Holgado-Madruga M., Maroun C., Fixman E. D., Kamikura D., Fournier T., Charest A., Tremblay M. L., Wong A. J., Park M. Association of the multisubstrate docking protein Gab1 with the hepatocyte growth factor receptor requires a functional Grb2 binding site involving tyrosine 1356. J Biol Chem. 1997 Aug 15;272(33):20811–20819. doi: 10.1074/jbc.272.33.20811. [DOI] [PubMed] [Google Scholar]
  22. Nievers M. G., Birge R. B., Greulich H., Verkleij A. J., Hanafusa H., van Bergen en Henegouwen P. M. v-Crk-induced cell transformation: changes in focal adhesion composition and signaling. J Cell Sci. 1997 Feb;110(Pt 3):389–399. doi: 10.1242/jcs.110.3.389. [DOI] [PubMed] [Google Scholar]
  23. Ojaniemi M., Vuori K. Epidermal growth factor modulates tyrosine phosphorylation of p130Cas. Involvement of phosphatidylinositol 3'-kinase and actin cytoskeleton. J Biol Chem. 1997 Oct 10;272(41):25993–25998. doi: 10.1074/jbc.272.41.25993. [DOI] [PubMed] [Google Scholar]
  24. Ponzetto C., Bardelli A., Zhen Z., Maina F., dalla Zonca P., Giordano S., Graziani A., Panayotou G., Comoglio P. M. A multifunctional docking site mediates signaling and transformation by the hepatocyte growth factor/scatter factor receptor family. Cell. 1994 Apr 22;77(2):261–271. doi: 10.1016/0092-8674(94)90318-2. [DOI] [PubMed] [Google Scholar]
  25. Ponzetto C., Zhen Z., Audero E., Maina F., Bardelli A., Basile M. L., Giordano S., Narsimhan R., Comoglio P. Specific uncoupling of GRB2 from the Met receptor. Differential effects on transformation and motility. J Biol Chem. 1996 Jun 14;271(24):14119–14123. doi: 10.1074/jbc.271.24.14119. [DOI] [PubMed] [Google Scholar]
  26. Reichman C. T., Mayer B. J., Keshav S., Hanafusa H. The product of the cellular crk gene consists primarily of SH2 and SH3 regions. Cell Growth Differ. 1992 Jul;3(7):451–460. [PubMed] [Google Scholar]
  27. Rodrigues G. A., Park M., Schlessinger J. Activation of the JNK pathway is essential for transformation by the Met oncogene. EMBO J. 1997 May 15;16(10):2634–2645. doi: 10.1093/emboj/16.10.2634. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Rozakis-Adcock M., Fernley R., Wade J., Pawson T., Bowtell D. The SH2 and SH3 domains of mammalian Grb2 couple the EGF receptor to the Ras activator mSos1. Nature. 1993 May 6;363(6424):83–85. doi: 10.1038/363083a0. [DOI] [PubMed] [Google Scholar]
  29. Sakaue M., Bowtell D., Kasuga M. A dominant-negative mutant of mSOS1 inhibits insulin-induced Ras activation and reveals Ras-dependent and -independent insulin signaling pathways. Mol Cell Biol. 1995 Jan;15(1):379–388. doi: 10.1128/mcb.15.1.379. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Schumacher C., Knudsen B. S., Ohuchi T., Di Fiore P. P., Glassman R. H., Hanafusa H. The SH3 domain of Crk binds specifically to a conserved proline-rich motif in Eps15 and Eps15R. J Biol Chem. 1995 Jun 23;270(25):15341–15347. doi: 10.1074/jbc.270.25.15341. [DOI] [PubMed] [Google Scholar]
  31. Songyang Z., Shoelson S. E., Chaudhuri M., Gish G., Pawson T., Haser W. G., King F., Roberts T., Ratnofsky S., Lechleider R. J. SH2 domains recognize specific phosphopeptide sequences. Cell. 1993 Mar 12;72(5):767–778. doi: 10.1016/0092-8674(93)90404-e. [DOI] [PubMed] [Google Scholar]
  32. Tajima H., Matsumoto K., Nakamura T. Regulation of cell growth and motility by hepatocyte growth factor and receptor expression in various cell species. Exp Cell Res. 1992 Oct;202(2):423–431. doi: 10.1016/0014-4827(92)90095-p. [DOI] [PubMed] [Google Scholar]
  33. Tanaka M., Gupta R., Mayer B. J. Differential inhibition of signaling pathways by dominant-negative SH2/SH3 adapter proteins. Mol Cell Biol. 1995 Dec;15(12):6829–6837. doi: 10.1128/mcb.15.12.6829. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Tanaka S., Morishita T., Hashimoto Y., Hattori S., Nakamura S., Shibuya M., Matuoka K., Takenawa T., Kurata T., Nagashima K. C3G, a guanine nucleotide-releasing protein expressed ubiquitously, binds to the Src homology 3 domains of CRK and GRB2/ASH proteins. Proc Natl Acad Sci U S A. 1994 Apr 12;91(8):3443–3447. doi: 10.1073/pnas.91.8.3443. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Tanaka S., Ouchi T., Hanafusa H. Downstream of Crk adaptor signaling pathway: activation of Jun kinase by v-Crk through the guanine nucleotide exchange protein C3G. Proc Natl Acad Sci U S A. 1997 Mar 18;94(6):2356–2361. doi: 10.1073/pnas.94.6.2356. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Teng K. K., Courtney J. C., van Bergen en Henegouwen P., Birge R. B., Hempstead B. L. Dissociation of NGF induced signal transduction from neurite elongation by expression of a mutant adaptor protein v-Crk in PC12 cells. Mol Cell Neurosci. 1996;8(2-3):157–170. [PubMed] [Google Scholar]
  37. Teng KK, Courtney JC, Henegouwen PB, Birge RB, Hempstead BL. Dissociation of NGF Induced Signal Transduction from Neurite Elongation by Expression of a Mutant Adaptor Protein v-Crk in PC12 Cells. Mol Cell Neurosci. 1996 Aug;8(2/3):157–170. doi: 10.1006/mcne.1996.0054. [DOI] [PubMed] [Google Scholar]
  38. Weidner K. M., Sachs M., Birchmeier W. The Met receptor tyrosine kinase transduces motility, proliferation, and morphogenic signals of scatter factor/hepatocyte growth factor in epithelial cells. J Cell Biol. 1993 Apr;121(1):145–154. doi: 10.1083/jcb.121.1.145. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES