Abstract
Transient receptor potential channels (TRPCs) are known as candidate molecular correlates of receptor-activated or store-operated calcium entry. While functional roles for most TRPCs have been suggested, the physiological relevance of TRPC2 remains obscure. Whereas human and bovine TRPC2 are candidate pseudogenes, full-length rodent TRPC2 transcripts have been reported. There is, however, considerable controversy concerning mRNA splicing, tissue distribution and the function of these proteins. We report the molecular cloning of two novel murine TRPC2 splice variants, mTRPC2alpha and mTRPC2beta. mTRPC2alpha RNA is expressed at low levels in many tissues and cell systems, while mTRPC2beta is exclusively and abundantly expressed in the vomeronasal organ (VNO). When expressed in human embryonic kidney (HEK)-293 cells, mTRPC2 did not enhance receptor- or store-activated calcium entry. In order to investigate the basis of such a functional defect, mTRPC2-green fluorescent protein fusion proteins were examined by confocal microscopy. Fusion proteins were retained in endomembranes when expressed in HEK-293 or other cells of epithelial or neuronal origin. Co-expression of TRPC2 with other TRPCs did not restore plasma-membrane trafficking. We conclude that TRPC2 may form functional channels in the cellular context of the VNO, but is unlikely to have a physiological function in other tissues.
Full Text
The Full Text of this article is available as a PDF (211.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Boulay G., Zhu X., Peyton M., Jiang M., Hurst R., Stefani E., Birnbaumer L. Cloning and expression of a novel mammalian homolog of Drosophila transient receptor potential (Trp) involved in calcium entry secondary to activation of receptors coupled by the Gq class of G protein. J Biol Chem. 1997 Nov 21;272(47):29672–29680. doi: 10.1074/jbc.272.47.29672. [DOI] [PubMed] [Google Scholar]
- Chevesich J., Kreuz A. J., Montell C. Requirement for the PDZ domain protein, INAD, for localization of the TRP store-operated channel to a signaling complex. Neuron. 1997 Jan;18(1):95–105. doi: 10.1016/s0896-6273(01)80049-0. [DOI] [PubMed] [Google Scholar]
- Dippel E., Kalkbrenner F., Wittig B., Schultz G. A heterotrimeric G protein complex couples the muscarinic m1 receptor to phospholipase C-beta. Proc Natl Acad Sci U S A. 1996 Feb 20;93(4):1391–1396. doi: 10.1073/pnas.93.4.1391. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dulac C., Axel R. A novel family of genes encoding putative pheromone receptors in mammals. Cell. 1995 Oct 20;83(2):195–206. doi: 10.1016/0092-8674(95)90161-2. [DOI] [PubMed] [Google Scholar]
- Grynkiewicz G., Poenie M., Tsien R. Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem. 1985 Mar 25;260(6):3440–3450. [PubMed] [Google Scholar]
- Hofmann T., Obukhov A. G., Schaefer M., Harteneck C., Gudermann T., Schultz G. Direct activation of human TRPC6 and TRPC3 channels by diacylglycerol. Nature. 1999 Jan 21;397(6716):259–263. doi: 10.1038/16711. [DOI] [PubMed] [Google Scholar]
- Hofmann T., Schaefer M., Schultz G., Gudermann T. Transient receptor potential channels as molecular substrates of receptor-mediated cation entry. J Mol Med (Berl) 2000;78(1):14–25. doi: 10.1007/s001099900070. [DOI] [PubMed] [Google Scholar]
- Holda J. R., Blatter L. A. Capacitative calcium entry is inhibited in vascular endothelial cells by disruption of cytoskeletal microfilaments. FEBS Lett. 1997 Feb 17;403(2):191–196. doi: 10.1016/s0014-5793(97)00051-3. [DOI] [PubMed] [Google Scholar]
- Jaquette J., Segaloff D. L. Temperature sensitivity of some mutants of the lutropin/choriogonadotropin receptor. Endocrinology. 1997 Jan;138(1):85–91. doi: 10.1210/endo.138.1.4902. [DOI] [PubMed] [Google Scholar]
- Kanzaki M., Zhang Y. Q., Mashima H., Li L., Shibata H., Kojima I. Translocation of a calcium-permeable cation channel induced by insulin-like growth factor-I. Nat Cell Biol. 1999 Jul;1(3):165–170. doi: 10.1038/11086. [DOI] [PubMed] [Google Scholar]
- Kiselyov K., Xu X., Mozhayeva G., Kuo T., Pessah I., Mignery G., Zhu X., Birnbaumer L., Muallem S. Functional interaction between InsP3 receptors and store-operated Htrp3 channels. Nature. 1998 Dec 3;396(6710):478–482. doi: 10.1038/24890. [DOI] [PubMed] [Google Scholar]
- Krieger J., Schmitt A., Löbel D., Gudermann T., Schultz G., Breer H., Boekhoff I. Selective activation of G protein subtypes in the vomeronasal organ upon stimulation with urine-derived compounds. J Biol Chem. 1999 Feb 19;274(8):4655–4662. doi: 10.1074/jbc.274.8.4655. [DOI] [PubMed] [Google Scholar]
- Liman E. R., Corey D. P., Dulac C. TRP2: a candidate transduction channel for mammalian pheromone sensory signaling. Proc Natl Acad Sci U S A. 1999 May 11;96(10):5791–5796. doi: 10.1073/pnas.96.10.5791. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Liman E. R., Corey D. P. Electrophysiological characterization of chemosensory neurons from the mouse vomeronasal organ. J Neurosci. 1996 Aug 1;16(15):4625–4637. doi: 10.1523/JNEUROSCI.16-15-04625.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Matsunami H., Buck L. B. A multigene family encoding a diverse array of putative pheromone receptors in mammals. Cell. 1997 Aug 22;90(4):775–784. doi: 10.1016/s0092-8674(00)80537-1. [DOI] [PubMed] [Google Scholar]
- Montell C., Rubin G. M. Molecular characterization of the Drosophila trp locus: a putative integral membrane protein required for phototransduction. Neuron. 1989 Apr;2(4):1313–1323. doi: 10.1016/0896-6273(89)90069-x. [DOI] [PubMed] [Google Scholar]
- Montell C. TRP trapped in fly signaling web. Curr Opin Neurobiol. 1998 Jun;8(3):389–397. doi: 10.1016/s0959-4388(98)80066-4. [DOI] [PubMed] [Google Scholar]
- Okada T., Inoue R., Yamazaki K., Maeda A., Kurosaki T., Yamakuni T., Tanaka I., Shimizu S., Ikenaka K., Imoto K. Molecular and functional characterization of a novel mouse transient receptor potential protein homologue TRP7. Ca(2+)-permeable cation channel that is constitutively activated and enhanced by stimulation of G protein-coupled receptor. J Biol Chem. 1999 Sep 24;274(39):27359–27370. doi: 10.1074/jbc.274.39.27359. [DOI] [PubMed] [Google Scholar]
- Okada T., Shimizu S., Wakamori M., Maeda A., Kurosaki T., Takada N., Imoto K., Mori Y. Molecular cloning and functional characterization of a novel receptor-activated TRP Ca2+ channel from mouse brain. J Biol Chem. 1998 Apr 24;273(17):10279–10287. doi: 10.1074/jbc.273.17.10279. [DOI] [PubMed] [Google Scholar]
- Patterson R. L., van Rossum D. B., Gill D. L. Store-operated Ca2+ entry: evidence for a secretion-like coupling model. Cell. 1999 Aug 20;98(4):487–499. doi: 10.1016/s0092-8674(00)81977-7. [DOI] [PubMed] [Google Scholar]
- Philipp S., Cavalié A., Freichel M., Wissenbach U., Zimmer S., Trost C., Marquart A., Murakami M., Flockerzi V. A mammalian capacitative calcium entry channel homologous to Drosophila TRP and TRPL. EMBO J. 1996 Nov 15;15(22):6166–6171. [PMC free article] [PubMed] [Google Scholar]
- Philipp S., Hambrecht J., Braslavski L., Schroth G., Freichel M., Murakami M., Cavalié A., Flockerzi V. A novel capacitative calcium entry channel expressed in excitable cells. EMBO J. 1998 Aug 3;17(15):4274–4282. doi: 10.1093/emboj/17.15.4274. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Phillips A. M., Bull A., Kelly L. E. Identification of a Drosophila gene encoding a calmodulin-binding protein with homology to the trp phototransduction gene. Neuron. 1992 Apr;8(4):631–642. doi: 10.1016/0896-6273(92)90085-r. [DOI] [PubMed] [Google Scholar]
- Ryba N. J., Tirindelli R. A new multigene family of putative pheromone receptors. Neuron. 1997 Aug;19(2):371–379. doi: 10.1016/s0896-6273(00)80946-0. [DOI] [PubMed] [Google Scholar]
- Sasaki K., Okamoto K., Inamura K., Tokumitsu Y., Kashiwayanagi M. Inositol-1,4,5-trisphosphate accumulation induced by urinary pheromones in female rat vomeronasal epithelium. Brain Res. 1999 Mar 27;823(1-2):161–168. doi: 10.1016/s0006-8993(99)01164-6. [DOI] [PubMed] [Google Scholar]
- Schaefer M., Plant T. D., Obukhov A. G., Hofmann T., Gudermann T., Schultz G. Receptor-mediated regulation of the nonselective cation channels TRPC4 and TRPC5. J Biol Chem. 2000 Jun 9;275(23):17517–17526. doi: 10.1074/jbc.275.23.17517. [DOI] [PubMed] [Google Scholar]
- Scott K., Zuker C. TRP, TRPL and trouble in photoreceptor cells. Curr Opin Neurobiol. 1998 Jun;8(3):383–388. doi: 10.1016/s0959-4388(98)80065-2. [DOI] [PubMed] [Google Scholar]
- Störtkuhl K. F., Hovemann B. T., Carlson J. R. Olfactory adaptation depends on the Trp Ca2+ channel in Drosophila. J Neurosci. 1999 Jun 15;19(12):4839–4846. doi: 10.1523/JNEUROSCI.19-12-04839.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tsunoda S., Sierralta J., Sun Y., Bodner R., Suzuki E., Becker A., Socolich M., Zuker C. S. A multivalent PDZ-domain protein assembles signalling complexes in a G-protein-coupled cascade. Nature. 1997 Jul 17;388(6639):243–249. doi: 10.1038/40805. [DOI] [PubMed] [Google Scholar]
- Vannier B., Peyton M., Boulay G., Brown D., Qin N., Jiang M., Zhu X., Birnbaumer L. Mouse trp2, the homologue of the human trpc2 pseudogene, encodes mTrp2, a store depletion-activated capacitative Ca2+ entry channel. Proc Natl Acad Sci U S A. 1999 Mar 2;96(5):2060–2064. doi: 10.1073/pnas.96.5.2060. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vannier B., Zhu X., Brown D., Birnbaumer L. The membrane topology of human transient receptor potential 3 as inferred from glycosylation-scanning mutagenesis and epitope immunocytochemistry. J Biol Chem. 1998 Apr 10;273(15):8675–8679. doi: 10.1074/jbc.273.15.8675. [DOI] [PubMed] [Google Scholar]
- Wes P. D., Chevesich J., Jeromin A., Rosenberg C., Stetten G., Montell C. TRPC1, a human homolog of a Drosophila store-operated channel. Proc Natl Acad Sci U S A. 1995 Oct 10;92(21):9652–9656. doi: 10.1073/pnas.92.21.9652. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wissenbach U., Schroth G., Philipp S., Flockerzi V. Structure and mRNA expression of a bovine trp homologue related to mammalian trp2 transcripts. FEBS Lett. 1998 Jun 5;429(1):61–66. doi: 10.1016/s0014-5793(98)00561-4. [DOI] [PubMed] [Google Scholar]
- Yao Y., Ferrer-Montiel A. V., Montal M., Tsien R. Y. Activation of store-operated Ca2+ current in Xenopus oocytes requires SNAP-25 but not a diffusible messenger. Cell. 1999 Aug 20;98(4):475–485. doi: 10.1016/s0092-8674(00)81976-5. [DOI] [PubMed] [Google Scholar]
- Zhu X., Jiang M., Birnbaumer L. Receptor-activated Ca2+ influx via human Trp3 stably expressed in human embryonic kidney (HEK)293 cells. Evidence for a non-capacitative Ca2+ entry. J Biol Chem. 1998 Jan 2;273(1):133–142. doi: 10.1074/jbc.273.1.133. [DOI] [PubMed] [Google Scholar]
- Zhu X., Jiang M., Peyton M., Boulay G., Hurst R., Stefani E., Birnbaumer L. trp, a novel mammalian gene family essential for agonist-activated capacitative Ca2+ entry. Cell. 1996 May 31;85(5):661–671. doi: 10.1016/s0092-8674(00)81233-7. [DOI] [PubMed] [Google Scholar]
- Zitt C., Obukhov A. G., Strübing C., Zobel A., Kalkbrenner F., Lückhoff A., Schultz G. Expression of TRPC3 in Chinese hamster ovary cells results in calcium-activated cation currents not related to store depletion. J Cell Biol. 1997 Sep 22;138(6):1333–1341. doi: 10.1083/jcb.138.6.1333. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zitt C., Zobel A., Obukhov A. G., Harteneck C., Kalkbrenner F., Lückhoff A., Schultz G. Cloning and functional expression of a human Ca2+-permeable cation channel activated by calcium store depletion. Neuron. 1996 Jun;16(6):1189–1196. doi: 10.1016/s0896-6273(00)80145-2. [DOI] [PubMed] [Google Scholar]
