Abstract
Intact human erythrocytes catalyse the conversion of fructose into fructose 3-phosphate with an apparent K(m) of 30 mM [Petersen, Kappler, Szwergold and Brown (1992) Biochem. J. 284, 363-366]. The physiological significance of this process is still unknown. In the present study we report that the formation of fructose 3-phosphate from 50 mM fructose in intact erythrocytes is inhibited by 1-deoxy-1-morpholinofructose (DMF), a synthetic fructosamine, with an apparent K(i) of 100 microM. (31)P NMR analysis of cell extracts incubated with DMF indicated the presence of an additional phosphorylated compound, which was partially purified and shown to be DMF 3-phosphate by tandem MS. Radiolabelled DMF was phosphorylated by intact erythrocytes with an apparent K(m) ( approximately 100 microM) approx. 300-fold lower than the value reported for fructose phosphorylation on its third carbon. These results indicate that the physiological function of the enzyme that is able to convert fructose into fructose 3-phosphate in intact erythrocytes is probably to phosphorylate fructosamines. This suggests that fructosamines, which are produced non-enzymically from glucose and amino compounds, may be metabolized in human erythrocytes.
Full Text
The Full Text of this article is available as a PDF (115.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Armbruster D. A. Fructosamine: structure, analysis, and clinical usefulness. Clin Chem. 1987 Dec;33(12):2153–2163. [PubMed] [Google Scholar]
- Baynes J. W. Role of oxidative stress in development of complications in diabetes. Diabetes. 1991 Apr;40(4):405–412. doi: 10.2337/diab.40.4.405. [DOI] [PubMed] [Google Scholar]
- Brownlee M. Lilly Lecture 1993. Glycation and diabetic complications. Diabetes. 1994 Jun;43(6):836–841. doi: 10.2337/diab.43.6.836. [DOI] [PubMed] [Google Scholar]
- Brownlee M., Vlassara H., Cerami A. Nonenzymatic glycosylation and the pathogenesis of diabetic complications. Ann Intern Med. 1984 Oct;101(4):527–537. doi: 10.7326/0003-4819-101-4-527. [DOI] [PubMed] [Google Scholar]
- Delpierre G., Rider M. H., Collard F., Stroobant V., Vanstapel F., Santos H., Van Schaftingen E. Identification, cloning, and heterologous expression of a mammalian fructosamine-3-kinase. Diabetes. 2000 Oct;49(10):1627–1634. doi: 10.2337/diabetes.49.10.1627. [DOI] [PubMed] [Google Scholar]
- Gerhardinger C., Marion M. S., Rovner A., Glomb M., Monnier V. M. Novel degradation pathway of glycated amino acids into free fructosamine by a Pseudomonas sp. soil strain extract. J Biol Chem. 1995 Jan 6;270(1):218–224. doi: 10.1074/jbc.270.1.218. [DOI] [PubMed] [Google Scholar]
- Goldstein D. E., Little R. R., Wiedmeyer H. M., England J. D., McKenzie E. M. Glycated hemoglobin: methodologies and clinical applications. Clin Chem. 1986 Oct;32(10 Suppl):B64–B70. [PubMed] [Google Scholar]
- Johnson R. N., Metcalf P. A., Baker J. R. Fructosamine: a new approach to the estimation of serum glycosylprotein. An index of diabetic control. Clin Chim Acta. 1983 Jan 7;127(1):87–95. doi: 10.1016/0009-8981(83)90078-5. [DOI] [PubMed] [Google Scholar]
- Khym J. X. An analytical system for rapid separation of tissue nucleotides at low pressures on conventional anion exchangers. Clin Chem. 1975 Aug;21(9):1245–1252. [PubMed] [Google Scholar]
- Lal S., Szwergold B. S., Kappler F., Brown T. Detection of fructose-3-phosphokinase activity in intact mammalian lenses by 31P NMR spectroscopy. J Biol Chem. 1993 Apr 15;268(11):7763–7767. [PubMed] [Google Scholar]
- Lal S., Szwergold B. S., Taylor A. H., Randall W. C., Kappler F., Wells-Knecht K., Baynes J. W., Brown T. R. Metabolism of fructose-3-phosphate in the diabetic rat lens. Arch Biochem Biophys. 1995 Apr 1;318(1):191–199. doi: 10.1006/abbi.1995.1220. [DOI] [PubMed] [Google Scholar]
- PONTIS H. G., FISCHER C. L. SYNTHESIS OF D-FRUCTOPYRANOSE 2-PHOSPHATE AND D-FRUCTOFURANOSE 2-PHOSPHATE. Biochem J. 1963 Dec;89:452–459. doi: 10.1042/bj0890452. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Petersen A., Kappler F., Szwergold B. S., Brown T. R. Fructose metabolism in the human erythrocyte. Phosphorylation to fructose 3-phosphate. Biochem J. 1992 Jun 1;284(Pt 2):363–366. doi: 10.1042/bj2840363. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Petersen A., Szwergold B. S., Kappler F., Weingarten M., Brown T. R. Identification of sorbitol 3-phosphate and fructose 3-phosphate in normal and diabetic human erythrocytes. J Biol Chem. 1990 Oct 15;265(29):17424–17427. [PubMed] [Google Scholar]
- Ravandi A., Kuksis A., Marai L., Myher J. J. Preparation and characterization of glucosylated aminoglycerophospholipids. Lipids. 1995 Oct;30(10):885–891. doi: 10.1007/BF02537478. [DOI] [PubMed] [Google Scholar]
- Szwergold B. S., Kappler F., Brown T. R. Identification of fructose 3-phosphate in the lens of diabetic rats. Science. 1990 Jan 26;247(4941):451–454. doi: 10.1126/science.2300805. [DOI] [PubMed] [Google Scholar]
- Szwergold B. S., Kappler F., Brown T. R., Pfeffer P., Osman S. F. Identification of D-sorbitol 3-phosphate in the normal and diabetic mammalian lens. J Biol Chem. 1989 Jun 5;264(16):9278–9282. [PubMed] [Google Scholar]
- Takahashi M., Pischetsrieder M., Monnier V. M. Molecular cloning and expression of amadoriase isoenzyme (fructosyl amine:oxygen oxidoreductase, EC 1.5.3) from Aspergillus fumigatus. J Biol Chem. 1997 May 9;272(19):12505–12507. doi: 10.1074/jbc.272.19.12505. [DOI] [PubMed] [Google Scholar]
- Topping D. L., Mayes P. A. The concentration of fructose, glucose and lactate in the splanchnic blood vessels of rats absorbing fructose. Nutr Metab. 1971;13(6):331–338. doi: 10.1159/000175352. [DOI] [PubMed] [Google Scholar]
- Van Schaftingen E., Hue L., Hers H. G. Fructose 2,6-bisphosphate, the probably structure of the glucose- and glucagon-sensitive stimulator of phosphofructokinase. Biochem J. 1980 Dec 15;192(3):897–901. doi: 10.1042/bj1920897. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Van den Berghe G. Inborn errors of fructose metabolism. Annu Rev Nutr. 1994;14:41–58. doi: 10.1146/annurev.nu.14.070194.000353. [DOI] [PubMed] [Google Scholar]
- Veiga-da-Cunha M., Hoyoux A., Van Schaftingen E., Houyoux A. Overexpression and purification of fructose-1-phosphate kinase from Escherichia coli: application to the assay of fructose 1-phosphate. Protein Expr Purif. 2000 Jun;19(1):48–52. doi: 10.1006/prep.2000.1237. [DOI] [PubMed] [Google Scholar]