Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2000 Dec 15;352(Pt 3):893–898.

A carbon-source-responsive element is required for regulation of the hypoxic ADP/ATP carrier (AAC3) isoform in Saccharomyces cerevisiae.

B Sokolíková 1, L Sabová 1, I Kissová 1, J Kolarov 1
PMCID: PMC1221531  PMID: 11104700

Abstract

The mitochondrial ADP/ATP carrier in Saccharomyces cerevisiae is encoded by three genes that are differentially expressed under different physiological conditions. We investigated the transcriptional control of AAC3, an oxygen-repressed isoform. By deletion analysis, DNA electrophoretic mobility-shift assays, DNase I footprinting and site-directed mutagenesis, we have identified a promoter region (upstream repressing sequence 1, URS(1)) involved in a carbon-source-dependent repression of AAC3. It is different from the previously characterized oxygen-dependent ROX1 (regulation by oxygen 1) repressor-binding region (URS(2)). The complex character of URS(1) includes the presence of two different cis-acting sequences: (i) a RAP1 (repressor activator protein 1)-binding site that is capable of binding the RAP1 protein in vitro and (ii) two putative ethanol-repression sequences, the modification of which derepresses the AAC3 gene. These findings demonstrate that the hypoxic AAC3 gene is regulated by two upstream repressor sites; one controlled by oxygen and haem, the other by the carbon source. Both sites function to completely switch off the expression of the AAC3 isoform when ATP is made by oxidative phosphorylation, and they modulate AAC3 expression when import of glycolytic ATP into mitochondria is required.

Full Text

The Full Text of this article is available as a PDF (184.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ansell R., Granath K., Hohmann S., Thevelein J. M., Adler L. The two isoenzymes for yeast NAD+-dependent glycerol 3-phosphate dehydrogenase encoded by GPD1 and GPD2 have distinct roles in osmoadaptation and redox regulation. EMBO J. 1997 May 1;16(9):2179–2187. doi: 10.1093/emboj/16.9.2179. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Arcangioli B., Lescure B. Identification of proteins involved in the regulation of yeast iso- 1-cytochrome C expression by oxygen. EMBO J. 1985 Oct;4(10):2627–2633. doi: 10.1002/j.1460-2075.1985.tb03980.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bourot S., Karst F. Isolation and characterization of the Saccharomyces cerevisiae SUT1 gene involved in sterol uptake. Gene. 1995 Nov 7;165(1):97–102. doi: 10.1016/0378-1119(95)00478-o. [DOI] [PubMed] [Google Scholar]
  4. Buchman A. R., Kimmerly W. J., Rine J., Kornberg R. D. Two DNA-binding factors recognize specific sequences at silencers, upstream activating sequences, autonomously replicating sequences, and telomeres in Saccharomyces cerevisiae. Mol Cell Biol. 1988 Jan;8(1):210–225. doi: 10.1128/mcb.8.1.210. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Donzeau M., Bourdineaud J. P., Lauquin G. J. Regulation by low temperatures and anaerobiosis of a yeast gene specifying a putative GPI-anchored plasma membrane protein [corrected]. Mol Microbiol. 1996 Apr;20(2):449–459. doi: 10.1111/j.1365-2958.1996.tb02631.x. [DOI] [PubMed] [Google Scholar]
  6. Fried M., Crothers D. M. Equilibria and kinetics of lac repressor-operator interactions by polyacrylamide gel electrophoresis. Nucleic Acids Res. 1981 Dec 11;9(23):6505–6525. doi: 10.1093/nar/9.23.6505. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Garner M. M., Revzin A. A gel electrophoresis method for quantifying the binding of proteins to specific DNA regions: application to components of the Escherichia coli lactose operon regulatory system. Nucleic Acids Res. 1981 Jul 10;9(13):3047–3060. doi: 10.1093/nar/9.13.3047. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Giraud S., Bonod-Bidaud C., Wesolowski-Louvel M., Stepien G. Expression of human ANT2 gene in highly proliferative cells: GRBOX, a new transcriptional element, is involved in the regulation of glycolytic ATP import into mitochondria. J Mol Biol. 1998 Aug 21;281(3):409–418. doi: 10.1006/jmbi.1998.1955. [DOI] [PubMed] [Google Scholar]
  9. Guarente L. Yeast promoters and lacZ fusions designed to study expression of cloned genes in yeast. Methods Enzymol. 1983;101:181–191. doi: 10.1016/0076-6879(83)01013-7. [DOI] [PubMed] [Google Scholar]
  10. Ito H., Fukuda Y., Murata K., Kimura A. Transformation of intact yeast cells treated with alkali cations. J Bacteriol. 1983 Jan;153(1):163–168. doi: 10.1128/jb.153.1.163-168.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kwast K. E., Burke P. V., Poyton R. O. Oxygen sensing and the transcriptional regulation of oxygen-responsive genes in yeast. J Exp Biol. 1998 Apr;201(Pt 8):1177–1195. doi: 10.1242/jeb.201.8.1177. [DOI] [PubMed] [Google Scholar]
  12. Lawson J. E., Gawaz M., Klingenberg M., Douglas M. G. Structure-function studies of adenine nucleotide transport in mitochondria. I. Construction and genetic analysis of yeast mutants encoding the ADP/ATP carrier protein of mitochondria. J Biol Chem. 1990 Aug 25;265(24):14195–14201. [PubMed] [Google Scholar]
  13. Liesen T., Hollenberg C. P., Heinisch J. J. ERA, a novel cis-acting element required for autoregulation and ethanol repression of PDC1 transcription in Saccharomyces cerevisiae. Mol Microbiol. 1996 Aug;21(3):621–632. doi: 10.1111/j.1365-2958.1996.tb02570.x. [DOI] [PubMed] [Google Scholar]
  14. Lowry C. V., Cerdán M. E., Zitomer R. S. A hypoxic consensus operator and a constitutive activation region regulate the ANB1 gene of Saccharomyces cerevisiae. Mol Cell Biol. 1990 Nov;10(11):5921–5926. doi: 10.1128/mcb.10.11.5921. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Sabová L., Zeman I., Supek F., Kolarov J. Transcriptional control of AAC3 gene encoding mitochondrial ADP/ATP translocator in Saccharomyces cerevisiae by oxygen, heme and ROX1 factor. Eur J Biochem. 1993 Apr 1;213(1):547–553. doi: 10.1111/j.1432-1033.1993.tb17793.x. [DOI] [PubMed] [Google Scholar]
  16. Sertil O., Cohen B. D., Davies K. J., Lowry C. V. The DAN1 gene of S. cerevisiae is regulated in parallel with the hypoxic genes, but by a different mechanism. Gene. 1997 Jun 19;192(2):199–205. doi: 10.1016/s0378-1119(97)00028-0. [DOI] [PubMed] [Google Scholar]
  17. Subík J., Kolarov J., Kovác L. Obligatory requirement of intramitochondrial ATP for normal functioning of the eucaryotic cell. Biochem Biophys Res Commun. 1972 Oct 6;49(1):192–198. doi: 10.1016/0006-291x(72)90028-9. [DOI] [PubMed] [Google Scholar]
  18. Zitomer R. S., Carrico P., Deckert J. Regulation of hypoxic gene expression in yeast. Kidney Int. 1997 Feb;51(2):507–513. doi: 10.1038/ki.1997.71. [DOI] [PubMed] [Google Scholar]
  19. Zitomer R. S., Lowry C. V. Regulation of gene expression by oxygen in Saccharomyces cerevisiae. Microbiol Rev. 1992 Mar;56(1):1–11. doi: 10.1128/mr.56.1.1-11.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. ter Linde J. J., Liang H., Davis R. W., Steensma H. Y., van Dijken J. P., Pronk J. T. Genome-wide transcriptional analysis of aerobic and anaerobic chemostat cultures of Saccharomyces cerevisiae. J Bacteriol. 1999 Dec;181(24):7409–7413. doi: 10.1128/jb.181.24.7409-7413.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES