Abstract
It has been generally accepted that superoxide anion generated by the mitochondrial respiratory transport chain are vectorially released into the mitochondrial matrix, where they are converted to hydrogen peroxide through the catalytic action of Mn-superoxide dismutase. Release of superoxide anion into the intermembrane space is a controversial topic, partly unresolved by the reaction of superoxide anion with cytochrome c, which faces the intermembrane space and is present in this compartment at a high concentration. This study was aimed at assessing the topological site(s) of release of superoxide anion during respiratory chain activity. To address this issue, mitoplasts were prepared from isolated mitochondria by digitonin treatment to remove portions of the outer membrane along with portions of cytochrome c. EPR analysis in conjunction with spin traps of antimycin-supplemented mitoplasts revealed the formation of a spin adduct of superoxide anion. The EPR signal was (i) abrogated by superoxide dismutase, (ii) decreased competitively by exogenous ferricytochrome c and (iii) broadened by the membrane-impermeable spin-broadening agent chromium trioxalate. These results confirm the production and release of superoxide anion towards the cytosolic side of the inner mitochondrial membrane. In addition, co-treatment of mitoplasts with myxothiazol and antimycin A, resulting in an inhibition of the oxidation of ubiquinol to ubisemiquinone, abolished the EPR signal, thus suggesting that ubisemiquinone autoxidation at the outer site of the complex-III ubiquinone pool is a pathway for superoxide anion formation and subsequent release into the intermembrane space. The generation of superoxide anion towards the intermembrane space requires consideration of the mitochondrial steady-state values for superoxide anion and hydrogen peroxide, the decay pathways of these oxidants in this compartment and the implications of these processes for cytosolic events.
Full Text
The Full Text of this article is available as a PDF (137.7 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Antunes F., Cadenas E. Estimation of H2O2 gradients across biomembranes. FEBS Lett. 2000 Jun 16;475(2):121–126. doi: 10.1016/s0014-5793(00)01638-0. [DOI] [PubMed] [Google Scholar]
- Antunes F., Salvador A., Marinho H. S., Alves R., Pinto R. E. Lipid peroxidation in mitochondrial inner membranes. I. An integrative kinetic model. Free Radic Biol Med. 1996;21(7):917–943. doi: 10.1016/s0891-5849(96)00185-2. [DOI] [PubMed] [Google Scholar]
- Belkin S., Mehlhorn R. J., Hideg K., Hankovsky O., Packer L. Reduction and destruction rates of nitroxide spin probes. Arch Biochem Biophys. 1987 Jul;256(1):232–243. doi: 10.1016/0003-9861(87)90441-3. [DOI] [PubMed] [Google Scholar]
- Berg S. P., Nesbitt D. M. Chromium oxalate: a new spin label broadening agent for use with thylakoids. Biochim Biophys Acta. 1979 Dec 6;548(3):608–615. doi: 10.1016/0005-2728(79)90068-9. [DOI] [PubMed] [Google Scholar]
- Boveris A., Cadenas E. Mitochondrial production of superoxide anions and its relationship to the antimycin insensitive respiration. FEBS Lett. 1975 Jul 1;54(3):311–314. doi: 10.1016/0014-5793(75)80928-8. [DOI] [PubMed] [Google Scholar]
- Boveris A., Cadenas E., Stoppani A. O. Role of ubiquinone in the mitochondrial generation of hydrogen peroxide. Biochem J. 1976 May 15;156(2):435–444. doi: 10.1042/bj1560435. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Boveris A., Oshino N., Chance B. The cellular production of hydrogen peroxide. Biochem J. 1972 Jul;128(3):617–630. doi: 10.1042/bj1280617. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brandt U. Bifurcated ubihydroquinone oxidation in the cytochrome bc1 complex by proton-gated charge transfer. FEBS Lett. 1996 May 27;387(1):1–6. doi: 10.1016/0014-5793(96)00436-x. [DOI] [PubMed] [Google Scholar]
- Butler J., Koppenol W. H., Margoliash E. Kinetics and mechanism of the reduction of ferricytochrome c by the superoxide anion. J Biol Chem. 1982 Sep 25;257(18):10747–10750. [PubMed] [Google Scholar]
- Cadenas E., Boveris A., Ragan C. I., Stoppani A. O. Production of superoxide radicals and hydrogen peroxide by NADH-ubiquinone reductase and ubiquinol-cytochrome c reductase from beef-heart mitochondria. Arch Biochem Biophys. 1977 Apr 30;180(2):248–257. doi: 10.1016/0003-9861(77)90035-2. [DOI] [PubMed] [Google Scholar]
- Chance B., Sies H., Boveris A. Hydroperoxide metabolism in mammalian organs. Physiol Rev. 1979 Jul;59(3):527–605. doi: 10.1152/physrev.1979.59.3.527. [DOI] [PubMed] [Google Scholar]
- Dionisi O., Galeotti T., Terranova T., Azzi A. Superoxide radicals and hydrogen peroxide formation in mitochondria from normal and neoplastic tissues. Biochim Biophys Acta. 1975 Oct 22;403(2):292–300. doi: 10.1016/0005-2744(75)90059-5. [DOI] [PubMed] [Google Scholar]
- Ernster L., Schatz G. Mitochondria: a historical review. J Cell Biol. 1981 Dec;91(3 Pt 2):227s–255s. doi: 10.1083/jcb.91.3.227s. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Geller B. L., Winge D. R. Rat liver Cu,Zn-superoxide dismutase. Subcellular location in lysosomes. J Biol Chem. 1982 Aug 10;257(15):8945–8952. [PubMed] [Google Scholar]
- Godeas C., Sandri G., Panfili E. Distribution of phospholipid hydroperoxide glutathione peroxidase (PHGPx) in rat testis mitochondria. Biochim Biophys Acta. 1994 Apr 20;1191(1):147–150. doi: 10.1016/0005-2736(94)90242-9. [DOI] [PubMed] [Google Scholar]
- Green R. C., O'Brien P. J. The cellular localisation of glutathione peroxidase and its release from mitochondria during swelling. Biochim Biophys Acta. 1970 Jan 13;197(1):31–39. doi: 10.1016/0005-2728(70)90005-8. [DOI] [PubMed] [Google Scholar]
- Gus'kova R. A., Ivanov I. I., Kol'tover V. K., Akhobadze V. V., Rubin A. B. Permeability of bilayer lipid membranes for superoxide (O2-.) radicals. Biochim Biophys Acta. 1984 Dec 19;778(3):579–585. doi: 10.1016/0005-2736(84)90409-7. [DOI] [PubMed] [Google Scholar]
- Hoppel C. L., Kerner J., Turkaly P., Turkaly J., Tandler B. The malonyl-CoA-sensitive form of carnitine palmitoyltransferase is not localized exclusively in the outer membrane of rat liver mitochondria. J Biol Chem. 1998 Sep 4;273(36):23495–23503. doi: 10.1074/jbc.273.36.23495. [DOI] [PubMed] [Google Scholar]
- Jackson C., Dench J., Moore A. L., Halliwell B., Foyer C. H., Hall D. O. Subcellular localisation and identification of superoxide dismutase in the leaves of higher plants. Eur J Biochem. 1978 Nov 15;91(2):339–344. doi: 10.1111/j.1432-1033.1978.tb12685.x. [DOI] [PubMed] [Google Scholar]
- Jünemann S., Heathcote P., Rich P. R. On the mechanism of quinol oxidation in the bc1 complex. J Biol Chem. 1998 Aug 21;273(34):21603–21607. doi: 10.1074/jbc.273.34.21603. [DOI] [PubMed] [Google Scholar]
- Ksenzenko M., Konstantinov A. A., Khomutov G. B., Tikhonov A. N., Ruuge E. K. Effect of electron transfer inhibitors on superoxide generation in the cytochrome bc1 site of the mitochondrial respiratory chain. FEBS Lett. 1983 May 2;155(1):19–24. doi: 10.1016/0014-5793(83)80200-2. [DOI] [PubMed] [Google Scholar]
- Lai C. S., Froncisz W., Hopwood L. E. An evaluation of paramagnetic broadening agents for spin probe studies of intact mammalian cells. Biophys J. 1987 Oct;52(4):625–628. doi: 10.1016/S0006-3495(87)83253-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mitchell P. Possible molecular mechanisms of the protonmotive function of cytochrome systems. J Theor Biol. 1976 Oct 21;62(2):327–367. doi: 10.1016/0022-5193(76)90124-7. [DOI] [PubMed] [Google Scholar]
- Panfili E., Sandri G., Ernster L. Distribution of glutathione peroxidases and glutathione reductase in rat brain mitochondria. FEBS Lett. 1991 Sep 23;290(1-2):35–37. doi: 10.1016/0014-5793(91)81219-x. [DOI] [PubMed] [Google Scholar]
- Pedersen P. L., Greenawalt J. W., Reynafarje B., Hullihen J., Decker G. L., Soper J. W., Bustamente E. Preparation and characterization of mitochondria and submitochondrial particles of rat liver and liver-derived tissues. Methods Cell Biol. 1978;20:411–481. doi: 10.1016/s0091-679x(08)62030-0. [DOI] [PubMed] [Google Scholar]
- Peeters-Joris C., Vandevoorde A. M., Baudhuin P. Subcellular localization of superoxide dismutase in rat liver. Biochem J. 1975 Jul;150(1):31–39. doi: 10.1042/bj1500031. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Quintanilha A. T., Packer L. Surface localization of sites of reduction of nitroxide spin-labeled molecules in mitochondria. Proc Natl Acad Sci U S A. 1977 Feb;74(2):570–574. doi: 10.1073/pnas.74.2.570. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sharp R. E., Moser C. C., Gibney B. R., Dutton P. L. Primary steps in the energy conversion reaction of the cytochrome bc1 complex Qo site. J Bioenerg Biomembr. 1999 Jun;31(3):225–233. doi: 10.1023/a:1005467628660. [DOI] [PubMed] [Google Scholar]
- Turrens J. F., Alexandre A., Lehninger A. L. Ubisemiquinone is the electron donor for superoxide formation by complex III of heart mitochondria. Arch Biochem Biophys. 1985 Mar;237(2):408–414. doi: 10.1016/0003-9861(85)90293-0. [DOI] [PubMed] [Google Scholar]
- Turrens J. F., Boveris A. Generation of superoxide anion by the NADH dehydrogenase of bovine heart mitochondria. Biochem J. 1980 Nov 1;191(2):421–427. doi: 10.1042/bj1910421. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tyler D. D. Polarographic assay and intracellular distribution of superoxide dismutase in rat liver. Biochem J. 1975 Jun;147(3):493–504. doi: 10.1042/bj1470493. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weisiger R. A., Fridovich I. Mitochondrial superoxide simutase. Site of synthesis and intramitochondrial localization. J Biol Chem. 1973 Jul 10;248(13):4793–4796. [PubMed] [Google Scholar]
- de Vries S. The pathway of electron transfer in the dimeric QH2: cytochrome c oxidoreductase. J Bioenerg Biomembr. 1986 Jun;18(3):195–224. doi: 10.1007/BF00743464. [DOI] [PubMed] [Google Scholar]
- von Jagow G., Link T. A. Use of specific inhibitors on the mitochondrial bc1 complex. Methods Enzymol. 1986;126:253–271. doi: 10.1016/s0076-6879(86)26026-7. [DOI] [PubMed] [Google Scholar]