Abstract
The mouse 5-hydroxytryptamine 4(a) receptor [5-HT(4(a))] was expressed with a baculovirus system in insect cells and analysed for acylation. [(3)H]Palmitic acid was effectively incorporated into 5-HT(4(a)) and label was sensitive to the treatment with reducing agents indicating a thioester-type bond. Analysis of protein-bound fatty acids revealed that 5-HT(4(a)) contains predominantly palmitic acid. Treatment of infected Sf9 (Spodoptera frugiperda) cells with BIMU8 [(endo-N-8-methyl-8-azabicyclo[3.2.1]oct-3-yl)-2,3-dehydro-2-oxo-3-(prop-2-yl)-1H-benzimid-azole-1-carboxamide], a 5-HT(4) receptor-selective agonist, generated a dose-dependent increase in [(3)H]palmitate incorporation into 5-HT(4(a)) with an EC(50) of approx. 10 nM. The change in receptor labelling after stimulation with agonist was receptor-specific and did not result from general metabolic effects. We also used both pulse labelling and pulse-chase labelling to address the dynamics of 5-HT(4(a)) palmitoylation. Incorporation studies revealed that the rate of palmitate incorporation was increased approx. 3-fold after stimulation with agonist. Results of pulse-chase experiments show that activation with BIMU8 promoted the release of radiolabel from 5-HT(4(a)), thereby reducing the levels of receptor-bound palmitate to approximately one-half. Taken together, our results demonstrate that palmitoylation of 5-HT(4(a)) is a reversible process and that stimulation of 5-HT(4(a)) with agonist increases the turnover rate for receptor-bound palmitate. This provides evidence for a regulated cycling of receptor-bound palmitate and suggests a functional role for palmitoylation/depalmitoylation in 5-hydroxytryptamine-mediated signalling.
Full Text
The Full Text of this article is available as a PDF (248.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bender E., Pindon A., van Oers I., Zhang Y. B., Gommeren W., Verhasselt P., Jurzak M., Leysen J., Luyten W. Structure of the human serotonin 5-HT4 receptor gene and cloning of a novel 5-HT4 splice variant. J Neurochem. 2000 Feb;74(2):478–489. doi: 10.1046/j.1471-4159.2000.740478.x. [DOI] [PubMed] [Google Scholar]
- Bonhomme N., Cador M., Stinus L., Le Moal M., Spampinato U. Short and long-term changes in dopamine and serotonin receptor binding sites in amphetamine-sensitized rats: a quantitative autoradiographic study. Brain Res. 1995 Mar 27;675(1-2):215–223. doi: 10.1016/0006-8993(95)00067-z. [DOI] [PubMed] [Google Scholar]
- Boutin J. A. Myristoylation. Cell Signal. 1997 Jan;9(1):15–35. doi: 10.1016/s0898-6568(96)00100-3. [DOI] [PubMed] [Google Scholar]
- Bouvier M., Loisel T. P., Hebert T. Dynamic regulation of G-protein coupled receptor palmitoylation: potential role in receptor function. Biochem Soc Trans. 1995 Aug;23(3):577–581. doi: 10.1042/bst0230577. [DOI] [PubMed] [Google Scholar]
- Chen C. A., Manning D. R. Regulation of galpha i palmitoylation by activation of the 5-hydroxytryptamine-1A receptor. J Biol Chem. 2000 Aug 4;275(31):23516–23522. doi: 10.1074/jbc.M003439200. [DOI] [PubMed] [Google Scholar]
- Claeysen S., Sebben M., Becamel C., Bockaert J., Dumuis A. Novel brain-specific 5-HT4 receptor splice variants show marked constitutive activity: role of the C-terminal intracellular domain. Mol Pharmacol. 1999 May;55(5):910–920. [PubMed] [Google Scholar]
- Dunphy J. T., Linder M. E. Signalling functions of protein palmitoylation. Biochim Biophys Acta. 1998 Dec 8;1436(1-2):245–261. doi: 10.1016/s0005-2760(98)00130-1. [DOI] [PubMed] [Google Scholar]
- Eason M. G., Jacinto M. T., Theiss C. T., Liggett S. B. The palmitoylated cysteine of the cytoplasmic tail of alpha 2A-adrenergic receptors confers subtype-specific agonist-promoted downregulation. Proc Natl Acad Sci U S A. 1994 Nov 8;91(23):11178–11182. doi: 10.1073/pnas.91.23.11178. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eglen R. M., Wong E. H., Dumuis A., Bockaert J. Central 5-HT4 receptors. Trends Pharmacol Sci. 1995 Nov;16(11):391–398. doi: 10.1016/s0165-6147(00)89081-1. [DOI] [PubMed] [Google Scholar]
- Fagni L., Dumuis A., Sebben M., Bockaert J. The 5-HT4 receptor subtype inhibits K+ current in colliculi neurones via activation of a cyclic AMP-dependent protein kinase. Br J Pharmacol. 1992 Apr;105(4):973–979. doi: 10.1111/j.1476-5381.1992.tb09087.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gao Z., Ni Y., Szabo G., Linden J. Palmitoylation of the recombinant human A1 adenosine receptor: enhanced proteolysis of palmitoylation-deficient mutant receptors. Biochem J. 1999 Sep 1;342(Pt 2):387–395. [PMC free article] [PubMed] [Google Scholar]
- Gordon J. I., Duronio R. J., Rudnick D. A., Adams S. P., Gokel G. W. Protein N-myristoylation. J Biol Chem. 1991 May 15;266(14):8647–8650. [PubMed] [Google Scholar]
- Gurdal H., Seasholtz T. M., Wang H. Y., Brown R. D., Johnson M. D., Friedman E. Role of G alpha q or G alpha o proteins in alpha 1-adrenoceptor subtype-mediated responses in Fischer 344 rat aorta. Mol Pharmacol. 1997 Dec;52(6):1064–1070. doi: 10.1124/mol.52.6.1064. [DOI] [PubMed] [Google Scholar]
- Kaufman J. F., Krangel M. S., Strominger J. L. Cysteines in the transmembrane region of major histocompatibility complex antigens are fatty acylated via thioester bonds. J Biol Chem. 1984 Jun 10;259(11):7230–7238. [PubMed] [Google Scholar]
- Liu J., García-Cardeña G., Sessa W. C. Biosynthesis and palmitoylation of endothelial nitric oxide synthase: mutagenesis of palmitoylation sites, cysteines-15 and/or -26, argues against depalmitoylation-induced translocation of the enzyme. Biochemistry. 1995 Sep 26;34(38):12333–12340. doi: 10.1021/bi00038a029. [DOI] [PubMed] [Google Scholar]
- Loisel T. P., Adam L., Hebert T. E., Bouvier M. Agonist stimulation increases the turnover rate of beta 2AR-bound palmitate and promotes receptor depalmitoylation. Biochemistry. 1996 Dec 10;35(49):15923–15932. doi: 10.1021/bi9611321. [DOI] [PubMed] [Google Scholar]
- Magee A. I., Gutierrez L., McKay I. A., Marshall C. J., Hall A. Dynamic fatty acylation of p21N-ras. EMBO J. 1987 Nov;6(11):3353–3357. doi: 10.1002/j.1460-2075.1987.tb02656.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Marchetti-Gauthier E., Roman F. S., Dumuis A., Bockaert J., Soumireu-Mourat B. BIMU1 increases associative memory in rats by activating 5-HT4 receptors. Neuropharmacology. 1997 Apr-May;36(4-5):697–706. doi: 10.1016/s0028-3908(97)00058-0. [DOI] [PubMed] [Google Scholar]
- McGlade C. J., Tremblay M. L., Yee S. P., Ross R., Branton P. E. Acylation of the 176R (19-kilodalton) early region 1B protein of human adenovirus type 5. J Virol. 1987 Oct;61(10):3227–3234. doi: 10.1128/jvi.61.10.3227-3234.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moffett S., Mouillac B., Bonin H., Bouvier M. Altered phosphorylation and desensitization patterns of a human beta 2-adrenergic receptor lacking the palmitoylated Cys341. EMBO J. 1993 Jan;12(1):349–356. doi: 10.1002/j.1460-2075.1993.tb05663.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Morales J., Fishburn C. S., Wilson P. T., Bourne H. R. Plasma membrane localization of G alpha z requires two signals. Mol Biol Cell. 1998 Jan;9(1):1–14. doi: 10.1091/mbc.9.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mumby S. M., Kleuss C., Gilman A. G. Receptor regulation of G-protein palmitoylation. Proc Natl Acad Sci U S A. 1994 Mar 29;91(7):2800–2804. doi: 10.1073/pnas.91.7.2800. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mumby S. M. Reversible palmitoylation of signaling proteins. Curr Opin Cell Biol. 1997 Apr;9(2):148–154. doi: 10.1016/s0955-0674(97)80056-7. [DOI] [PubMed] [Google Scholar]
- Ng G. Y., Mouillac B., George S. R., Caron M., Dennis M., Bouvier M., O'Dowd B. F. Desensitization, phosphorylation and palmitoylation of the human dopamine D1 receptor. Eur J Pharmacol. 1994 Mar 15;267(1):7–19. doi: 10.1016/0922-4106(94)90219-4. [DOI] [PubMed] [Google Scholar]
- Okamoto Y., Ninomiya H., Tanioka M., Sakamoto A., Miwa S., Masaki T. Palmitoylation of human endothelinB. Its critical role in G protein coupling and a differential requirement for the cytoplasmic tail by G protein subtypes. J Biol Chem. 1997 Aug 22;272(34):21589–21596. doi: 10.1074/jbc.272.34.21589. [DOI] [PubMed] [Google Scholar]
- Ponimaskin E., Harteneck C., Schultz G., Schmidt M. F. A cysteine-11 to serine mutant of G alpha12 impairs activation through the thrombin receptor. FEBS Lett. 1998 Jun 16;429(3):370–374. doi: 10.1016/s0014-5793(98)00638-3. [DOI] [PubMed] [Google Scholar]
- Ponimaskin E., Schmidt M. F. Acylation of viral glycoproteins: structural requirements for palmitoylation of transmembrane proteins. Biochem Soc Trans. 1995 Aug;23(3):565–568. doi: 10.1042/bst0230565. [DOI] [PubMed] [Google Scholar]
- Ponimaskin E., Schmidt M. F. Domain-structure of cytoplasmic border region is main determinant for palmitoylation of influenza virus hemagglutinin (H7). Virology. 1998 Sep 30;249(2):325–335. doi: 10.1006/viro.1998.9303. [DOI] [PubMed] [Google Scholar]
- Probst W. C., Snyder L. A., Schuster D. I., Brosius J., Sealfon S. C. Sequence alignment of the G-protein coupled receptor superfamily. DNA Cell Biol. 1992 Jan-Feb;11(1):1–20. doi: 10.1089/dna.1992.11.1. [DOI] [PubMed] [Google Scholar]
- Resh M. D. Fatty acylation of proteins: new insights into membrane targeting of myristoylated and palmitoylated proteins. Biochim Biophys Acta. 1999 Aug 12;1451(1):1–16. doi: 10.1016/s0167-4889(99)00075-0. [DOI] [PubMed] [Google Scholar]
- Ross E. M. Protein modification. Palmitoylation in G-protein signaling pathways. Curr Biol. 1995 Feb 1;5(2):107–109. doi: 10.1016/s0960-9822(95)00026-1. [DOI] [PubMed] [Google Scholar]
- Sachs K., Maretzki D., Meyer C. K., Hofmann K. P. Diffusible ligand all-trans-retinal activates opsin via a palmitoylation-dependent mechanism. J Biol Chem. 2000 Mar 3;275(9):6189–6194. doi: 10.1074/jbc.275.9.6189. [DOI] [PubMed] [Google Scholar]
- Schmidt M. F. Fatty acylation of proteins. Biochim Biophys Acta. 1989 Dec 6;988(3):411–426. doi: 10.1016/0304-4157(89)90013-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Towler D. A., Gordon J. I., Adams S. P., Glaser L. The biology and enzymology of eukaryotic protein acylation. Annu Rev Biochem. 1988;57:69–99. doi: 10.1146/annurev.bi.57.070188.000441. [DOI] [PubMed] [Google Scholar]
- Veit M., Nürnberg B., Spicher K., Harteneck C., Ponimaskin E., Schultz G., Schmidt M. F. The alpha-subunits of G-proteins G12 and G13 are palmitoylated, but not amidically myristoylated. FEBS Lett. 1994 Feb 14;339(1-2):160–164. doi: 10.1016/0014-5793(94)80406-0. [DOI] [PubMed] [Google Scholar]
- Wedegaertner P. B., Bourne H. R. Activation and depalmitoylation of Gs alpha. Cell. 1994 Jul 1;77(7):1063–1070. doi: 10.1016/0092-8674(94)90445-6. [DOI] [PubMed] [Google Scholar]
- Wong E. H., Reynolds G. P., Bonhaus D. W., Hsu S., Eglen R. M. Characterization of [3H]GR 113808 binding to 5-HT4 receptors in brain tissues from patients with neurodegenerative disorders. Behav Brain Res. 1996;73(1-2):249–252. doi: 10.1016/0166-4328(96)00106-4. [DOI] [PubMed] [Google Scholar]