Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2001 Feb 15;354(Pt 1):37–46. doi: 10.1042/0264-6021:3540037

Crystal structure of a monocotyledon (maize ZMGlu1) beta-glucosidase and a model of its complex with p-nitrophenyl beta-D-thioglucoside.

M Czjzek 1, M Cicek 1, V Zamboni 1, W P Burmeister 1, D R Bevan 1, B Henrissat 1, A Esen 1
PMCID: PMC1221626  PMID: 11171077

Abstract

The maize beta-glucosidase isoenzymes ZMGlu1 and ZMGlu2 hydrolyse the abundant natural substrate DIMBOAGlc (2-O-beta-D-glucopyranosyl-4-hydroxy-7-methoxy-1,4-benzoxazin-3-one), whose aglycone DIMBOA (2,4-hydroxy-7-methoxy-1,4-benzoxazin-3-one) is the major defence chemical protecting seedlings and young plant parts against herbivores and other pests. The two isoenzymes hydrolyse DIMBOAGlc with similar kinetics but differ from each other and their sorghum homologues with respect to specificity towards other substrates. To gain insights into the mechanism of substrate (i.e. aglycone) specificity between the two maize isoenzymes and their sorghum homologues, ZMGlu1 was produced in Escherichia coli, purified, crystallized and its structure solved at 2.5 Angstrom resolution by X-ray crystallography. In addition, the complex of ZMGlu1 with the non-hydrolysable inhibitor p-nitrophenyl beta-D-thioglucoside was crystallized and, based on the partial electron density, a model for the inhibitor molecule within the active site is proposed. The inhibitor is located in a slot-like active site where its aromatic aglycone is held by stacking interactions with Trp-378. Whereas some of the atoms on the non-reducing end of the glucose moiety can be modelled on the basis of the electron density, most of the inhibitor atoms are highly disordered. This is attributed to the requirement of the enzyme to accommodate two different species, namely the substrate in its ground state and in its distorted conformation, for catalysis.

Full Text

The Full Text of this article is available as a PDF (368.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aguilar C. F., Sanderson I., Moracci M., Ciaramella M., Nucci R., Rossi M., Pearl L. H. Crystal structure of the beta-glycosidase from the hyperthermophilic archeon Sulfolobus solfataricus: resilience as a key factor in thermostability. J Mol Biol. 1997 Sep 5;271(5):789–802. doi: 10.1006/jmbi.1997.1215. [DOI] [PubMed] [Google Scholar]
  2. Barrett T., Suresh C. G., Tolley S. P., Dodson E. J., Hughes M. A. The crystal structure of a cyanogenic beta-glucosidase from white clover, a family 1 glycosyl hydrolase. Structure. 1995 Sep 15;3(9):951–960. doi: 10.1016/s0969-2126(01)00229-5. [DOI] [PubMed] [Google Scholar]
  3. Barton G. J. ALSCRIPT: a tool to format multiple sequence alignments. Protein Eng. 1993 Jan;6(1):37–40. doi: 10.1093/protein/6.1.37. [DOI] [PubMed] [Google Scholar]
  4. Brünger A. T., Adams P. D., Clore G. M., DeLano W. L., Gros P., Grosse-Kunstleve R. W., Jiang J. S., Kuszewski J., Nilges M., Pannu N. S. Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr D Biol Crystallogr. 1998 Sep 1;54(Pt 5):905–921. doi: 10.1107/s0907444998003254. [DOI] [PubMed] [Google Scholar]
  5. Burmeister W. P., Cottaz S., Driguez H., Iori R., Palmieri S., Henrissat B. The crystal structures of Sinapis alba myrosinase and a covalent glycosyl-enzyme intermediate provide insights into the substrate recognition and active-site machinery of an S-glycosidase. Structure. 1997 May 15;5(5):663–675. doi: 10.1016/s0969-2126(97)00221-9. [DOI] [PubMed] [Google Scholar]
  6. Chi Y. I., Martinez-Cruz L. A., Jancarik J., Swanson R. V., Robertson D. E., Kim S. H. Crystal structure of the beta-glycosidase from the hyperthermophile Thermosphaera aggregans: insights into its activity and thermostability. FEBS Lett. 1999 Feb 26;445(2-3):375–383. doi: 10.1016/s0014-5793(99)00090-3. [DOI] [PubMed] [Google Scholar]
  7. Cicek M., Blanchard D., Bevan D. R., Esen A. The aglycone specificity-determining sites are different in 2, 4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA)-glucosidase (Maize beta -glucosidase) and dhurrinase (Sorghum beta -glucosidase). J Biol Chem. 2000 Jun 30;275(26):20002–20011. doi: 10.1074/jbc.M001609200. [DOI] [PubMed] [Google Scholar]
  8. Cicek M., Esen A. Expression of soluble and catalytically active plant (monocot) beta-glucosidases in E. coli. Biotechnol Bioeng. 1999 May 20;63(4):392–400. doi: 10.1002/(sici)1097-0290(19990520)63:4<392::aid-bit2>3.0.co;2-m. [DOI] [PubMed] [Google Scholar]
  9. Cicek M., Esen A. Structure and expression of a dhurrinase (beta-glucosidase) from sorghum. Plant Physiol. 1998 Apr;116(4):1469–1478. doi: 10.1104/pp.116.4.1469. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Davies G. J., Dauter M., Brzozowski A. M., Bjørnvad M. E., Andersen K. V., Schülein M. Structure of the Bacillus agaradherans family 5 endoglucanase at 1.6 A and its cellobiose complex at 2.0 A resolution. Biochemistry. 1998 Feb 17;37(7):1926–1932. doi: 10.1021/bi972162m. [DOI] [PubMed] [Google Scholar]
  11. Davies G. J., Mackenzie L., Varrot A., Dauter M., Brzozowski A. M., Schülein M., Withers S. G. Snapshots along an enzymatic reaction coordinate: analysis of a retaining beta-glycoside hydrolase. Biochemistry. 1998 Aug 25;37(34):11707–11713. doi: 10.1021/bi981315i. [DOI] [PubMed] [Google Scholar]
  12. Davies G., Henrissat B. Structures and mechanisms of glycosyl hydrolases. Structure. 1995 Sep 15;3(9):853–859. doi: 10.1016/S0969-2126(01)00220-9. [DOI] [PubMed] [Google Scholar]
  13. Dharmawardhana D. P., Ellis B. E., Carlson J. E. A beta-glucosidase from lodgepole pine xylem specific for the lignin precursor coniferin. Plant Physiol. 1995 Feb;107(2):331–339. doi: 10.1104/pp.107.2.331. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Dominguez R., Souchon H., Spinelli S., Dauter Z., Wilson K. S., Chauvaux S., Béguin P., Alzari P. M. A common protein fold and similar active site in two distinct families of beta-glycanases. Nat Struct Biol. 1995 Jul;2(7):569–576. doi: 10.1038/nsb0795-569. [DOI] [PubMed] [Google Scholar]
  15. Ducros V., Czjzek M., Belaich A., Gaudin C., Fierobe H. P., Belaich J. P., Davies G. J., Haser R. Crystal structure of the catalytic domain of a bacterial cellulase belonging to family 5. Structure. 1995 Sep 15;3(9):939–949. doi: 10.1016/S0969-2126(01)00228-3. [DOI] [PubMed] [Google Scholar]
  16. Esen A. Purification and Partial Characterization of Maize (Zea mays L.) beta-Glucosidase. Plant Physiol. 1992 Jan;98(1):174–182. doi: 10.1104/pp.98.1.174. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Henrissat B. A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J. 1991 Dec 1;280(Pt 2):309–316. doi: 10.1042/bj2800309. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Henrissat B., Callebaut I., Fabrega S., Lehn P., Mornon J. P., Davies G. Conserved catalytic machinery and the prediction of a common fold for several families of glycosyl hydrolases. Proc Natl Acad Sci U S A. 1995 Jul 18;92(15):7090–7094. doi: 10.1073/pnas.92.15.7090. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Henrissat B., Davies G. Structural and sequence-based classification of glycoside hydrolases. Curr Opin Struct Biol. 1997 Oct;7(5):637–644. doi: 10.1016/s0959-440x(97)80072-3. [DOI] [PubMed] [Google Scholar]
  20. Hösel W., Tober I., Eklund S. H., Conn E. E. Characterization of beta-glucosidases with high specificity for the cyanogenic glucoside dhurrin in Sorghum bicolor (L.) moench seedlings. Arch Biochem Biophys. 1987 Jan;252(1):152–162. doi: 10.1016/0003-9861(87)90019-1. [DOI] [PubMed] [Google Scholar]
  21. Jacobson R. H., Zhang X. J., DuBose R. F., Matthews B. W. Three-dimensional structure of beta-galactosidase from E. coli. Nature. 1994 Jun 30;369(6483):761–766. doi: 10.1038/369761a0. [DOI] [PubMed] [Google Scholar]
  22. Jenkins J., Lo Leggio L., Harris G., Pickersgill R. Beta-glucosidase, beta-galactosidase, family A cellulases, family F xylanases and two barley glycanases form a superfamily of enzymes with 8-fold beta/alpha architecture and with two conserved glutamates near the carboxy-terminal ends of beta-strands four and seven. FEBS Lett. 1995 Apr 10;362(3):281–285. doi: 10.1016/0014-5793(95)00252-5. [DOI] [PubMed] [Google Scholar]
  23. Laine R. A. A calculation of all possible oligosaccharide isomers both branched and linear yields 1.05 x 10(12) structures for a reducing hexasaccharide: the Isomer Barrier to development of single-method saccharide sequencing or synthesis systems. Glycobiology. 1994 Dec;4(6):759–767. doi: 10.1093/glycob/4.6.759. [DOI] [PubMed] [Google Scholar]
  24. Leah R., Kigel J., Svendsen I., Mundy J. Biochemical and molecular characterization of a barley seed beta-glucosidase. J Biol Chem. 1995 Jun 30;270(26):15789–15797. doi: 10.1074/jbc.270.26.15789. [DOI] [PubMed] [Google Scholar]
  25. Lett C. Marc, Guillemette J. Guy. Increasing the redox potential of isoform 1 of yeast cytochrome c through the modification of select haem interactions. Biochem J. 2002 Mar 1;362(Pt 2):281–287. doi: 10.1042/0264-6021:3620281. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. McDonald I. K., Thornton J. M. Satisfying hydrogen bonding potential in proteins. J Mol Biol. 1994 May 20;238(5):777–793. doi: 10.1006/jmbi.1994.1334. [DOI] [PubMed] [Google Scholar]
  27. Merritt E. A., Murphy M. E. Raster3D Version 2.0. A program for photorealistic molecular graphics. Acta Crystallogr D Biol Crystallogr. 1994 Nov 1;50(Pt 6):869–873. doi: 10.1107/S0907444994006396. [DOI] [PubMed] [Google Scholar]
  28. Miller S. The structure of interfaces between subunits of dimeric and tetrameric proteins. Protein Eng. 1989 Nov;3(2):77–83. doi: 10.1093/protein/3.2.77. [DOI] [PubMed] [Google Scholar]
  29. Nicholls A., Sharp K. A., Honig B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins. 1991;11(4):281–296. doi: 10.1002/prot.340110407. [DOI] [PubMed] [Google Scholar]
  30. Poulton J. E. Cyanogenesis in plants. Plant Physiol. 1990 Oct;94(2):401–405. doi: 10.1104/pp.94.2.401. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Rotrekl V., Nejedlá E., Kucera I., Abdallah F., Palme K., Brzobohatý B. The role of cysteine residues in structure and enzyme activity of a maize beta-glucosidase. Eur J Biochem. 1999 Dec;266(3):1056–1065. doi: 10.1046/j.1432-1327.1999.00948.x. [DOI] [PubMed] [Google Scholar]
  32. Sanz-Aparicio J., Hermoso J. A., Martínez-Ripoll M., Lequerica J. L., Polaina J. Crystal structure of beta-glucosidase A from Bacillus polymyxa: insights into the catalytic activity in family 1 glycosyl hydrolases. J Mol Biol. 1998 Jan 23;275(3):491–502. doi: 10.1006/jmbi.1997.1467. [DOI] [PubMed] [Google Scholar]
  33. Sulzenbacher G., Schülein M., Davies G. J. Structure of the endoglucanase I from Fusarium oxysporum: native, cellobiose, and 3,4-epoxybutyl beta-D-cellobioside-inhibited forms, at 2.3 A resolution. Biochemistry. 1997 May 13;36(19):5902–5911. doi: 10.1021/bi962963+. [DOI] [PubMed] [Google Scholar]
  34. Tews I., Perrakis A., Oppenheim A., Dauter Z., Wilson K. S., Vorgias C. E. Bacterial chitobiase structure provides insight into catalytic mechanism and the basis of Tay-Sachs disease. Nat Struct Biol. 1996 Jul;3(7):638–648. doi: 10.1038/nsb0796-638. [DOI] [PubMed] [Google Scholar]
  35. Vogt G., Woell S., Argos P. Protein thermal stability, hydrogen bonds, and ion pairs. J Mol Biol. 1997 Jun 20;269(4):631–643. doi: 10.1006/jmbi.1997.1042. [DOI] [PubMed] [Google Scholar]
  36. Wallace A. C., Laskowski R. A., Thornton J. M. LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. Protein Eng. 1995 Feb;8(2):127–134. doi: 10.1093/protein/8.2.127. [DOI] [PubMed] [Google Scholar]
  37. Wang Q., Trimbur D., Graham R., Warren R. A., Withers S. G. Identification of the acid/base catalyst in Agrobacterium faecalis beta-glucosidase by kinetic analysis of mutants. Biochemistry. 1995 Nov 7;34(44):14554–14562. doi: 10.1021/bi00044a034. [DOI] [PubMed] [Google Scholar]
  38. Wiesmann C., Beste G., Hengstenberg W., Schulz G. E. The three-dimensional structure of 6-phospho-beta-galactosidase from Lactococcus lactis. Structure. 1995 Sep 15;3(9):961–968. doi: 10.1016/s0969-2126(01)00230-1. [DOI] [PubMed] [Google Scholar]
  39. Wiesmann C., Hengstenberg W., Schulz G. E. Crystal structures and mechanism of 6-phospho-beta-galactosidase from Lactococcus lactis. J Mol Biol. 1997 Jun 27;269(5):851–860. doi: 10.1006/jmbi.1997.1084. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES