Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2001 Mar 15;354(Pt 3):681–688. doi: 10.1042/0264-6021:3540681

Phosphatidic acid-phosphatidylethanolamine interaction and apocytochrome c translocation across model membranes.

Q Miao 1, X Han 1, F Yang 1
PMCID: PMC1221700  PMID: 11237873

Abstract

The translocation of apocytochrome c (apocyt.c) across large unilamellar vesicles (LUVs) constructed from mixtures of anionic and zwitterionic phospholipids, phosphatidylethanolamine (PE) and phosphatidylcholine (PC), has been studied. It was shown that the import ratio of horse heart apocyt.c in LUVs composed of phosphatidic acid (PA) combined with PE and PC (62+/-10%) was much higher than that in LUVs made of PE and PC plus any other acidic phospholipid species (20+/-5%). This feature was shared by tuna heart and chicken heart apocyt.c. In addition, the greater efficiency of the PA/PE/PC system versus others in facilitating apocyt.c translocation was maintained using synthetic anionic phospholipids with the same acyl chains. Besides, apocyt.c induces more leakage of entrapped fluorescein sulphonate (FS) from the interior of PA/PC/PE vesicles compared with phosphatidylglycerol (PG)/PC/PE ones. By measuring the intrinsic fluorescence emission spectrum and the accessibility of the preprotein to the fluorescence quencher, acrylamide, differences could be detected in the conformational changes of apocyt.c as a consequence of its interaction with PA/PE/PC and PG/PE/PC vesicles, respectively. Particularly notable is that PE is indispensable for the PA/PE/PC system to most efficiently facilitate apocyt.c translocation across the model membranes. With the fraction of PE increasing from 0 to 30 mol%, the translocation efficiency of apocyt.c as well as its ability to induce FS efflux was significantly enhanced in PA-containing LUVs, whereas this was not observed in the case of replacement of PA by PG or phosphatidylserine. It is also interesting to note that in LUVs containing PA, dioleoyl-PE, but not dielaidoyl-PE, can exert such influences, indicative of the role of non-bilayer formation propensity. On the basis of these results it is postulated that PA might increase the bilayer-destabilizing effects of PE, and hence increase the translocation efficiency of apocyt.c and its leakage-induction ability.

Full Text

The Full Text of this article is available as a PDF (190.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barr F. A., Shorter J. Membrane traffic: do cones mark sites of fission? Curr Biol. 2000 Feb 24;10(4):R141–R144. doi: 10.1016/s0960-9822(00)00326-2. [DOI] [PubMed] [Google Scholar]
  2. Bazzi M. D., Youakim M. A., Nelsestuen G. L. Importance of phosphatidylethanolamine for association of protein kinase C and other cytoplasmic proteins with membranes. Biochemistry. 1992 Feb 4;31(4):1125–1134. doi: 10.1021/bi00119a022. [DOI] [PubMed] [Google Scholar]
  3. Bondeson J., Wijkander J., Sundler R. Proton-induced membrane fusion. Role of phospholipid composition and protein-mediated intermembrane contact. Biochim Biophys Acta. 1984 Oct 17;777(1):21–27. doi: 10.1016/0005-2736(84)90492-9. [DOI] [PubMed] [Google Scholar]
  4. Chen P. Y., Pearce D., Verkman A. S. Membrane water and solute permeability determined quantitatively by self-quenching of an entrapped fluorophore. Biochemistry. 1988 Jul 26;27(15):5713–5718. doi: 10.1021/bi00415a048. [DOI] [PubMed] [Google Scholar]
  5. Cullis P. R., de Kruijff B. Lipid polymorphism and the functional roles of lipids in biological membranes. Biochim Biophys Acta. 1979 Dec 20;559(4):399–420. doi: 10.1016/0304-4157(79)90012-1. [DOI] [PubMed] [Google Scholar]
  6. Daum G., Vance J. E. Import of lipids into mitochondria. Prog Lipid Res. 1997 Sep;36(2-3):103–130. doi: 10.1016/s0163-7827(97)00006-4. [DOI] [PubMed] [Google Scholar]
  7. De Kroon A. I., Soekarjo M. W., De Gier J., De Kruijff B. The role of charge and hydrophobicity in peptide-lipid interaction: a comparative study based on tryptophan fluorescence measurements combined with the use of aqueous and hydrophobic quenchers. Biochemistry. 1990 Sep 11;29(36):8229–8240. doi: 10.1021/bi00488a006. [DOI] [PubMed] [Google Scholar]
  8. Dumont M. E., Cardillo T. S., Hayes M. K., Sherman F. Role of cytochrome c heme lyase in mitochondrial import and accumulation of cytochrome c in Saccharomyces cerevisiae. Mol Cell Biol. 1991 Nov;11(11):5487–5496. doi: 10.1128/mcb.11.11.5487. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Dumont M. E., Schlichter J. B., Cardillo T. S., Hayes M. K., Bethlendy G., Sherman F. CYC2 encodes a factor involved in mitochondrial import of yeast cytochrome c. Mol Cell Biol. 1993 Oct;13(10):6442–6451. doi: 10.1128/mcb.13.10.6442. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Epand R. M. Lipid polymorphism and protein-lipid interactions. Biochim Biophys Acta. 1998 Nov 10;1376(3):353–368. doi: 10.1016/s0304-4157(98)00015-x. [DOI] [PubMed] [Google Scholar]
  11. Farren S. B., Hope M. J., Cullis P. R. Polymorphic phase preferences of phosphatidic acid: A 31P and 2H NMR study. Biochem Biophys Res Commun. 1983 Mar 16;111(2):675–682. doi: 10.1016/0006-291x(83)90359-5. [DOI] [PubMed] [Google Scholar]
  12. Hakvoort T. B., Sprinkle J. R., Margoliash E. Reversible import of apocytochrome c into mitochondria. Proc Natl Acad Sci U S A. 1990 Jul;87(13):4996–5000. doi: 10.1073/pnas.87.13.4996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hamada D., Hoshino M., Kataoka M., Fink A. L., Goto Y. Intermediate conformational states of apocytochrome c. Biochemistry. 1993 Oct 5;32(39):10351–10358. doi: 10.1021/bi00090a010. [DOI] [PubMed] [Google Scholar]
  14. Hartl F. U., Pfanner N., Nicholson D. W., Neupert W. Mitochondrial protein import. Biochim Biophys Acta. 1989 Jan 18;988(1):1–45. doi: 10.1016/0304-4157(89)90002-6. [DOI] [PubMed] [Google Scholar]
  15. Li L., Zheng L. X., Yang F. Y. Effect of propensity of hexagonal II phase formation on the activity of mitochondrial ubiquinol-cytochrome c reductase and H(+)-ATPase. Chem Phys Lipids. 1995 Jun 19;76(2):135–144. doi: 10.1016/0009-3084(95)02437-n. [DOI] [PubMed] [Google Scholar]
  16. Mayer A., Neupert W., Lill R. Translocation of apocytochrome c across the outer membrane of mitochondria. J Biol Chem. 1995 May 26;270(21):12390–12397. doi: 10.1074/jbc.270.21.12390. [DOI] [PubMed] [Google Scholar]
  17. Nicholson D. W., Hergersberg C., Neupert W. Role of cytochrome c heme lyase in the import of cytochrome c into mitochondria. J Biol Chem. 1988 Dec 15;263(35):19034–19042. [PubMed] [Google Scholar]
  18. Rankin S. E., Watts A., Pinheiro T. J. Electrostatic and hydrophobic contributions to the folding mechanism of apocytochrome c driven by the interaction with lipid. Biochemistry. 1998 Sep 8;37(36):12588–12595. doi: 10.1021/bi980408x. [DOI] [PubMed] [Google Scholar]
  19. Rietveld A., Jordi W., de Kruijff B. Studies on the lipid dependency and mechanism of the translocation of the mitochondrial precursor protein apocytochrome c across model membranes. J Biol Chem. 1986 Mar 15;261(8):3846–3856. [PubMed] [Google Scholar]
  20. Rietveld A., Sijens P., Verkleij A. J., Kruijff B. Interaction of cytochrome c and its precursor apocytochrome c with various phospholipids. EMBO J. 1983;2(6):907–913. doi: 10.1002/j.1460-2075.1983.tb01520.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Rouser G., Fkeischer S., Yamamoto A. Two dimensional then layer chromatographic separation of polar lipids and determination of phospholipids by phosphorus analysis of spots. Lipids. 1970 May;5(5):494–496. doi: 10.1007/BF02531316. [DOI] [PubMed] [Google Scholar]
  22. Schmidt A., Wolde M., Thiele C., Fest W., Kratzin H., Podtelejnikov A. V., Witke W., Huttner W. B., Söling H. D. Endophilin I mediates synaptic vesicle formation by transfer of arachidonate to lysophosphatidic acid. Nature. 1999 Sep 9;401(6749):133–141. doi: 10.1038/43613. [DOI] [PubMed] [Google Scholar]
  23. Seddon J. M. Structure of the inverted hexagonal (HII) phase, and non-lamellar phase transitions of lipids. Biochim Biophys Acta. 1990 Feb 28;1031(1):1–69. doi: 10.1016/0304-4157(90)90002-t. [DOI] [PubMed] [Google Scholar]
  24. Shai Y. Mechanism of the binding, insertion and destabilization of phospholipid bilayer membranes by alpha-helical antimicrobial and cell non-selective membrane-lytic peptides. Biochim Biophys Acta. 1999 Dec 15;1462(1-2):55–70. doi: 10.1016/s0005-2736(99)00200-x. [DOI] [PubMed] [Google Scholar]
  25. Snel M. M., de Kruijff B., Marsh D. Interaction of spin-labeled apocytochrome c and spin-labeled cytochrome c with negatively charged lipids studied by electron spin resonance. Biochemistry. 1994 Jun 14;33(23):7146–7156. doi: 10.1021/bi00189a018. [DOI] [PubMed] [Google Scholar]
  26. Speelmans G., Staffhorst RWHM, de Kruijff B. The anionic phospholipid-mediated membrane interaction of the anti-cancer drug doxorubicin is enhanced by phosphatidylethanolamine compared to other zwitterionic phospholipids. Biochemistry. 1997 Jul 15;36(28):8657–8662. doi: 10.1021/bi963151g. [DOI] [PubMed] [Google Scholar]
  27. Stellwagen E., Rysavy R., Babul G. The conformation of horse heart apocytochrome c. J Biol Chem. 1972 Dec 25;247(24):8074–8077. [PubMed] [Google Scholar]
  28. Szoka F., Jr, Papahadjopoulos D. Procedure for preparation of liposomes with large internal aqueous space and high capture by reverse-phase evaporation. Proc Natl Acad Sci U S A. 1978 Sep;75(9):4194–4198. doi: 10.1073/pnas.75.9.4194. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Tong J. C., Zhu L. Q., Yang F. Y. V92A mutation altered the folding propensity of chicken apocytochrome c and its interaction with phospholipids. Biochemistry. 1996 Jul 23;35(29):9460–9468. doi: 10.1021/bi952360i. [DOI] [PubMed] [Google Scholar]
  30. Van Voorst F., De Kruijff B. Role of lipids in the translocation of proteins across membranes. Biochem J. 2000 May 1;347(Pt 3):601–612. doi: 10.1042/0264-6021:3470601. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. de Jongh H. H., Brasseur R., Killian J. A. Orientation of the alpha-helices of apocytochrome c and derived fragments at membrane interfaces, as studied by circular dichroism. Biochemistry. 1994 Dec 6;33(48):14529–14535. doi: 10.1021/bi00252a020. [DOI] [PubMed] [Google Scholar]
  32. de Jongh H. H., Killian J. A., de Kruijff B. A water-lipid interface induces a highly dynamic folded state in apocytochrome c and cytochrome c, which may represent a common folding intermediate. Biochemistry. 1992 Feb 18;31(6):1636–1643. doi: 10.1021/bi00121a008. [DOI] [PubMed] [Google Scholar]
  33. de Jongh H. H., de Kruijff B. The conformational changes of apocytochrome c upon binding to phospholipid vesicles and micelles of phospholipid based detergents: a circular dichroism study. Biochim Biophys Acta. 1990 Nov 2;1029(1):105–112. doi: 10.1016/0005-2736(90)90442-q. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES