Abstract
In isolated mitochondria the consequences of oxidative phosphorylation uncoupling are well defined, whereas in intact cells various effects have been described. Uncoupling liver cells with 2,4-dinitrophenol (DNP) in the presence of dihydroxyacetone (DHA) and ethanol results in a marked decrease in mitochondrial transmembrane electrical potential (DeltaPsi), ATP/ADP ratios and gluconeogenesis (as an ATP-utilizing process), whereas the increased oxidation rate is limited and transient. Conversely, when DHA is associated with octanoate or proline, DNP addition results in a very large and sustained increase in oxidation rate, whereas the decreases in DeltaPsi, ATP/ADP ratios and gluconeogenesis are significantly less when compared with DHA and ethanol. Hence significant energy wastage (high oxidation rate) by uncoupling is achieved only with substrates that are directly oxidized in the mitochondrial matrix. Conversely in the presence of substrates that are first oxidized in the cytosol, uncoupling results in a profound decrease in mitochondrial DeltaPsi and ATP synthesis, whereas energy wastage is very limited.
Full Text
The Full Text of this article is available as a PDF (106.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Argaud D., Roth H., Wiernsperger N., Leverve X. M. Metformin decreases gluconeogenesis by enhancing the pyruvate kinase flux in isolated rat hepatocytes. Eur J Biochem. 1993 May 1;213(3):1341–1348. doi: 10.1111/j.1432-1033.1993.tb17886.x. [DOI] [PubMed] [Google Scholar]
- Benel L., Ronot X., Kornprobst M., Adolphe M., Mounolou J. C. Mitochondrial uptake of rhodamine 123 by rabbit articular chondrocytes. Cytometry. 1986 May;7(3):281–285. doi: 10.1002/cyto.990070309. [DOI] [PubMed] [Google Scholar]
- Berry M. N., Friend D. S. High-yield preparation of isolated rat liver parenchymal cells: a biochemical and fine structural study. J Cell Biol. 1969 Dec;43(3):506–520. doi: 10.1083/jcb.43.3.506. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Berry M. N., Kun E., Werner H. V. Regulatory role of reducing-equivalent transfer from substrate to oxygen in the hepatic metabolism of glycerol and sorbitol. Eur J Biochem. 1973 Mar 15;33(3):407–417. doi: 10.1111/j.1432-1033.1973.tb02697.x. [DOI] [PubMed] [Google Scholar]
- Boss O., Muzzin P., Giacobino J. P. The uncoupling proteins, a review. Eur J Endocrinol. 1998 Jul;139(1):1–9. doi: 10.1530/eje.0.1390001. [DOI] [PubMed] [Google Scholar]
- Boss O., Samec S., Paoloni-Giacobino A., Rossier C., Dulloo A., Seydoux J., Muzzin P., Giacobino J. P. Uncoupling protein-3: a new member of the mitochondrial carrier family with tissue-specific expression. FEBS Lett. 1997 May 12;408(1):39–42. doi: 10.1016/s0014-5793(97)00384-0. [DOI] [PubMed] [Google Scholar]
- Brand M. D., Couture P., Else P. L., Withers K. W., Hulbert A. J. Evolution of energy metabolism. Proton permeability of the inner membrane of liver mitochondria is greater in a mammal than in a reptile. Biochem J. 1991 Apr 1;275(Pt 1):81–86. doi: 10.1042/bj2750081. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Clapham J. C., Arch J. R., Chapman H., Haynes A., Lister C., Moore G. B., Piercy V., Carter S. A., Lehner I., Smith S. A. Mice overexpressing human uncoupling protein-3 in skeletal muscle are hyperphagic and lean. Nature. 2000 Jul 27;406(6794):415–418. doi: 10.1038/35019082. [DOI] [PubMed] [Google Scholar]
- Darzynkiewicz Z., Traganos F., Staiano-Coico L., Kapuscinski J., Melamed M. R. Interaction of rhodamine 123 with living cells studied by flow cytometry. Cancer Res. 1982 Mar;42(3):799–806. [PubMed] [Google Scholar]
- Duchen M. R. Contributions of mitochondria to animal physiology: from homeostatic sensor to calcium signalling and cell death. J Physiol. 1999 Apr 1;516(Pt 1):1–17. doi: 10.1111/j.1469-7793.1999.001aa.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fleury C., Neverova M., Collins S., Raimbault S., Champigny O., Levi-Meyrueis C., Bouillaud F., Seldin M. F., Surwit R. S., Ricquier D. Uncoupling protein-2: a novel gene linked to obesity and hyperinsulinemia. Nat Genet. 1997 Mar;15(3):269–272. doi: 10.1038/ng0397-269. [DOI] [PubMed] [Google Scholar]
- Gabai V. L. Inhibition of uncoupled respiration in tumor cells. A possible role of mitochondrial Ca2+ efflux. FEBS Lett. 1993 Aug 23;329(1-2):67–71. doi: 10.1016/0014-5793(93)80195-z. [DOI] [PubMed] [Google Scholar]
- Gong D. W., He Y., Karas M., Reitman M. Uncoupling protein-3 is a mediator of thermogenesis regulated by thyroid hormone, beta3-adrenergic agonists, and leptin. J Biol Chem. 1997 Sep 26;272(39):24129–24132. doi: 10.1074/jbc.272.39.24129. [DOI] [PubMed] [Google Scholar]
- Gong D. W., Monemdjou S., Gavrilova O., Leon L. R., Marcus-Samuels B., Chou C. J., Everett C., Kozak L. P., Li C., Deng C. Lack of obesity and normal response to fasting and thyroid hormone in mice lacking uncoupling protein-3. J Biol Chem. 2000 May 26;275(21):16251–16257. doi: 10.1074/jbc.M910177199. [DOI] [PubMed] [Google Scholar]
- Groen A. K., Sips H. J., Vervoorn R. C., Tager J. M. Intracellular compartmentation and control of alanine metabolism in rat liver parenchymal cells. Eur J Biochem. 1982 Feb;122(1):87–93. doi: 10.1111/j.1432-1033.1982.tb05851.x. [DOI] [PubMed] [Google Scholar]
- Korshunov S. S., Korkina O. V., Ruuge E. K., Skulachev V. P., Starkov A. A. Fatty acids as natural uncouplers preventing generation of O2.- and H2O2 by mitochondria in the resting state. FEBS Lett. 1998 Sep 18;435(2-3):215–218. doi: 10.1016/s0014-5793(98)01073-4. [DOI] [PubMed] [Google Scholar]
- LaNoue K. F., Schoolwerth A. C. Metabolite transport in mitochondria. Annu Rev Biochem. 1979;48:871–922. doi: 10.1146/annurev.bi.48.070179.004255. [DOI] [PubMed] [Google Scholar]
- Laloi M., Klein M., Riesmeier J. W., Müller-Röber B., Fleury C., Bouillaud F., Ricquier D. A plant cold-induced uncoupling protein. Nature. 1997 Sep 11;389(6647):135–136. doi: 10.1038/38156. [DOI] [PubMed] [Google Scholar]
- Larrouy D., Laharrague P., Carrera G., Viguerie-Bascands N., Levi-Meyrueis C., Fleury C., Pecqueur C., Nibbelink M., André M., Casteilla L. Kupffer cells are a dominant site of uncoupling protein 2 expression in rat liver. Biochem Biophys Res Commun. 1997 Jun 27;235(3):760–764. doi: 10.1006/bbrc.1997.6852. [DOI] [PubMed] [Google Scholar]
- Leclercq P., Filippi C., Sibille B., Hamant S., Keriel C., Leverve X. M. Inhibition of glycerol metabolism in hepatocytes isolated from endotoxic rats. Biochem J. 1997 Jul 15;325(Pt 2):519–525. doi: 10.1042/bj3250519. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Leverve X. M., Groen A. K., Verhoeven A. J., Tager J. M. Kinetic analysis of short-term effects of alpha-agonists on gluconeogenesis in isolated rat hepatocytes. FEBS Lett. 1985 Feb 11;181(1):43–46. doi: 10.1016/0014-5793(85)81110-8. [DOI] [PubMed] [Google Scholar]
- Leverve X. M., Verhoeven A. J., Groen A. K., Meijer A. J., Tager J. M. The malate/aspartate shuttle and pyruvate kinase as targets involved in the stimulation of gluconeogenesis by phenylephrine. Eur J Biochem. 1986 Mar 17;155(3):551–556. doi: 10.1111/j.1432-1033.1986.tb09523.x. [DOI] [PubMed] [Google Scholar]
- Leverve X., Sibille B., Devin A., Piquet M. A., Espié P., Rigoulet M. Oxidative phosphorylation in intact hepatocytes: quantitative characterization of the mechanisms of change in efficiency and cellular consequences. Mol Cell Biochem. 1998 Jul;184(1-2):53–65. [PubMed] [Google Scholar]
- Meijer A. J., Van Dam K. The metabolic significance of anion transport in mitochondria. Biochim Biophys Acta. 1974 Dec 30;346(3-4):213–244. doi: 10.1016/0304-4173(74)90001-9. [DOI] [PubMed] [Google Scholar]
- Millet L., Vidal H., Andreelli F., Larrouy D., Riou J. P., Ricquier D., Laville M., Langin D. Increased uncoupling protein-2 and -3 mRNA expression during fasting in obese and lean humans. J Clin Invest. 1997 Dec 1;100(11):2665–2670. doi: 10.1172/JCI119811. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nicholls D. G., Locke R. M. Thermogenic mechanisms in brown fat. Physiol Rev. 1984 Jan;64(1):1–64. doi: 10.1152/physrev.1984.64.1.1. [DOI] [PubMed] [Google Scholar]
- Nègre-Salvayre A., Hirtz C., Carrera G., Cazenave R., Troly M., Salvayre R., Pénicaud L., Casteilla L. A role for uncoupling protein-2 as a regulator of mitochondrial hydrogen peroxide generation. FASEB J. 1997 Aug;11(10):809–815. [PubMed] [Google Scholar]
- Piquet M. A., Fontaine E., Sibille B., Filippi C., Keriel C., Leverve X. M. Uncoupling effect of polyunsaturated fatty acid deficiency in isolated rat hepatocytes:effect on glycerol metabolism. Biochem J. 1996 Aug 1;317(Pt 3):667–674. doi: 10.1042/bj3170667. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ricquier D., Bouillaud F. The uncoupling protein homologues: UCP1, UCP2, UCP3, StUCP and AtUCP. Biochem J. 2000 Jan 15;345(Pt 2):161–179. [PMC free article] [PubMed] [Google Scholar]
- Rigoulet M., Leverve X. M., Plomp P. J., Meijer A. J. Stimulation by glucose of gluconeogenesis in hepatocytes isolated from starved rats. Biochem J. 1987 Aug 1;245(3):661–668. doi: 10.1042/bj2450661. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rigoulet M., Leverve X., Fontaine E., Ouhabi R., Guérin B. Quantitative analysis of some mechanisms affecting the yield of oxidative phosphorylation: dependence upon both fluxes and forces. Mol Cell Biochem. 1998 Jul;184(1-2):35–52. [PubMed] [Google Scholar]
- Sanchis D., Fleury C., Chomiki N., Goubern M., Huang Q., Neverova M., Grégoire F., Easlick J., Raimbault S., Lévi-Meyrueis C. BMCP1, a novel mitochondrial carrier with high expression in the central nervous system of humans and rodents, and respiration uncoupling activity in recombinant yeast. J Biol Chem. 1998 Dec 18;273(51):34611–34615. doi: 10.1074/jbc.273.51.34611. [DOI] [PubMed] [Google Scholar]
- Sibille B., Keriel C., Fontaine E., Catelloni F., Rigoulet M., Leverve X. M. Octanoate affects 2,4-dinitrophenol uncoupling in intact isolated rat hepatocytes. Eur J Biochem. 1995 Jul 15;231(2):498–502. doi: 10.1111/j.1432-1033.1995.tb20724.x. [DOI] [PubMed] [Google Scholar]
- Sibille B., Ronot X., Filippi C., Nogueira V., Keriel C., Leverve X. 2,4 Dinitrophenol-uncoupling effect on delta psi in living hepatocytes depends on reducing-equivalent supply. Cytometry. 1998 Jun 1;32(2):102–108. doi: 10.1002/(sici)1097-0320(19980601)32:2<102::aid-cyto5>3.0.co;2-n. [DOI] [PubMed] [Google Scholar]
- Skulachev V. P. Uncoupling: new approaches to an old problem of bioenergetics. Biochim Biophys Acta. 1998 Feb 25;1363(2):100–124. doi: 10.1016/s0005-2728(97)00091-1. [DOI] [PubMed] [Google Scholar]
- Van Der Meer R., Tager J. M. A simple method for the perfusion of isolated liver cells. FEBS Lett. 1976 Aug 1;67(1):36–40. doi: 10.1016/0014-5793(76)80865-4. [DOI] [PubMed] [Google Scholar]
- Vidal-Puig A. J., Grujic D., Zhang C. Y., Hagen T., Boss O., Ido Y., Szczepanik A., Wade J., Mootha V., Cortright R. Energy metabolism in uncoupling protein 3 gene knockout mice. J Biol Chem. 2000 May 26;275(21):16258–16266. doi: 10.1074/jbc.M910179199. [DOI] [PubMed] [Google Scholar]
- Williamson D. H., Lund P., Krebs H. A. The redox state of free nicotinamide-adenine dinucleotide in the cytoplasm and mitochondria of rat liver. Biochem J. 1967 May;103(2):514–527. doi: 10.1042/bj1030514. [DOI] [PMC free article] [PubMed] [Google Scholar]