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Structural flexibility is an essential attribute, without which few
proteins could carry out their biological functions. Much information
about protein flexibility has come from x-ray crystallography, in the
form of atomic mean-square displacements (AMSDs) or B factors.
Profiles showing the AMSD variation along the polypeptide chain are
usually interpreted in dynamical terms but are ultimately governed by
the local features of a highly complex energy landscape. Here, we
bypass this complexity by showing that the AMSD profile is essen-
tially determined by spatial variations in local packing density. On the
basis of elementary statistical mechanics and generic features of
atomic distributions in proteins, we predict a direct inverse propor-
tionality between the AMSD and the contact density, i.e., the number
of noncovalent neighbor atoms within a local region of �1.5 nm3

volume. Testing this local density model against a set of high-quality
crystal structures of 38 nonhomologous proteins, we find that it
accurately and consistently reproduces the prominent peaks in the
AMSD profile and even captures minor features, such as the periodic
AMSD variation within � helices. The predicted rigidifying effect of
crystal contacts also agrees with experimental data. With regard to
accuracy and computational efficiency, the model is clearly superior to
its predecessors. The quantitative link between flexibility and packing
density found here implies that AMSDs provide little independent
information beyond that contained in the mean atomic coordinates.

To date, x-ray crystallography has provided nearly 12,000 atomic-
level models of protein structure (see http:��www.rcsb.org�

pdb�). The primary data, structure factors of Bragg reflections,
result from diffraction of x-rays by the atoms in a single-crystal
comprising some 1015 protein molecules. At any instant, the mem-
bers of this molecular ensemble are continuously, but nonuni-
formly, distributed in conformational space. The structure factors
yield a set of mean atomic positions rk

0 � �rk� that define the
‘‘ground-state’’ protein structure, or, if resolution permits, a small
number of substantially populated low-energy conformational sub-
states. For each atom thus located, one also obtains a Debye–
Waller factor, i.e., the spatial Fourier transform of the probability
distribution function (PDF) Fk(uk) for displacements uk � rk � rk

0

of atom k away from its mean position (1). For diffraction data of
ultra-high resolution, Fk(uk) is usually modeled as a trivariate
Gaussian function, parametrized in terms of the six independent
elements of the atomic covariance matrix �uk uk

T� (2). More com-
monly, one adopts a univariant Gaussian function, fully character-
ized by the (isotropic) mean-square displacement �uk�uk� � �k, or
the B factor Bk � 8�2�k�3.

Like the mean atomic positions, the set of atomic mean square
displacements (AMSDs) {�k}, k � 1, 2, . . . , N, is an intrinsic
property of the protein (in its crystal environment), providing a
spatially resolved measure of the small-amplitude pliability or
flexibility of the ground-state protein conformation (3). Although
Bragg diffraction data contain no information about the rate or
mechanism of conformational motion, AMSDs are often discussed
and interpreted in dynamical terms (3–5). Indeed, the terms
flexibility, dynamics, and mobility are often used synonymously in
this context. In principle, AMSDs can be calculated and the
associated motions identified by molecular dynamics simulations
based on semiempirical atomic force-field models (6–9). In prac-
tice, the agreement between simulated and experimental AMSDs
is modest (7–9), even when the rigidifying effect of crystal contacts
is taken into account (7, 9). Calculated AMSDs tend to increase

with the length of the analyzed trajectory as slower motions of
larger amplitude are sampled and do not converge even in nano-
second-length simulations (8, 9). Among the slower motions are
dihedral barrier crossings between distinct conformational sub-
states, such as alternative side-chain conformations. The displace-
ment distribution Fk(uk) for atoms undergoing such motions is
multimodal and hence not well approximated by a Gaussian
function (10, 11). Therefore, ultra-high-resolution diffraction data
are usually modeled with several residues in alternative conforma-
tions, each with its own set of AMSDs. In either case, conforma-
tional substates complicate the comparison with simulated
AMSDs.

Disregarding minor quantum effects, AMSDs are static equilib-
rium properties, completely determined by the interactions within
the system. In other words, AMSDs cannot depend on any kinetic
parameters, such as libration frequencies, substate interconversion
rates, or solvent viscosity. Consequently, AMSDs can be predicted
without invoking motion. Moreover, this should be far less chal-
lenging than predicting the mean atomic positions (the folding
problem), because AMSDs are governed by local features of the
energy landscape near the global minimum. It has long been
recognized that AMSDs correlate with structural features such as
solvent exposure, packing density, and secondary structure (5, 12,
13). However, such observations have been of a qualitative nature
and have not been pursued in a systematic way.

The aim of the present work is to explore the hypothesis that
AMSDs can be predicted solely on the basis of packing density. This
hypothesis is motivated by the following considerations. On aver-
age, protein interiors are as densely packed as crystalline solids
(14–17). Most atoms therefore cannot be displaced much without
also displacing some of their nonbonded neighbors. Yet, the local
density, averaged over volume elements of 0.1–1 nm3, varies
substantially within a protein (14, 17, 18). Equivalently stated, the
distribution of voids (cavities and subatomic interstices) is highly
inhomogeneous. Presumably, low-density regions can accommo-
date a variety of alternative packings or conformations, whereas
high-density regions might be realized only for a few closely similar
conformations. AMSDs should then be anticorrelated with local
packing density.

Although these arguments are intuitively appealing, the func-
tional form an AMSD–density relationship is not obvious. We show
here that a simple inverse proportionality, �k � nk

�1, emerges from
a series of crude but well-defined approximations. As the measure
of local packing, we use the contact density nk, i.e., the number of
nonhydrogen atoms within a spherical region of �1.5 nm3 volume
centered on atom k. We then test the predictive power of this simple
relation on a set of 38 nonhomologous protein crystal structures of
exceptionally high quality. We find that the simple inverse rela-
tionship faithfully reproduces the variation of backbone as well as
side-chain AMSDs along the polypeptide chain. Because the
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AMSD profile can be predicted with good accuracy from the
contact density, it does not furnish much independent information
beyond that already contained in the mean coordinates. This
finding has implications for how we think about AMSDs. For
example, the use of AMSDs to infer likely pathways for ligand
access to internal sites (3, 4, 19), sometimes called thermal motion
paths (19), essentially amounts to an identification of contiguous
regions of low packing density.

The present local density approach to AMSDs is superficially
related to the use of effective harmonic potentials with distance-
dependent force constants to predict AMSDs and large-scale
conformational transitions (20–23). However, the underlying phys-
ical models are qualitatively different. Moreover, the present ap-
proach is both more accurate and more computationally efficient.

Methods
Statistical–Mechanical Basis. The isotropic AMSD, �k, of atom k is
defined by

�k � �duk uk
2 Fk�uk	 � 4��

0




duk uk
4 F� k�uk	, [1]

where F� k(uk) is the orientational average of the displacement PDF
Fk(uk). The potential of mean force (POMF) wk associated with
Fk(uk) may be defined through (24)

Fk�uk	 � Ck
�1exp��� wk�uk	�, [2]

where � � (kBT)�1, and Ck is a constant that normalizes Fk(uk) to
unity. Expanding wk around the mean position of atom k, we obtain
(in matrix notation)

� wk � uk
T ak �

1
2

uk
T Bk uk � . . . , [3]

where the Cartesian components of the vector ak and the tensor Bk
are first and second derivatives, respectively, of �wk with respect to
the Cartesian components of the displacement vector uk, evaluated
at the mean position rk

0 (or uk � 0).
The isotropic PDF F� k(uk) in Eq. 1 involves the orientational

average of the Boltzmann factor in Eq. 2. We approximate this by
the Boltzmann factor of the orientationally averaged POMF:

F� k�uk	 � C� k
�1exp��� w� k�uk	�. [4]

When we take the isotropic average of wk in Eq. 3, all terms
containing odd powers of uk vanish, so that

� w� k�uk	 � k uk
2 � O�uk

4	, [5]

with k � Tr Bk�3. For sufficiently small displacements, we can
neglect terms of fourth and higher order in Eq. 5. The orientation-
ally averaged POMF then becomes harmonic, as generally assumed
in the interpretation of diffraction data (1, 2), and a combination
of Eqs. 1, 4, and 5 yields �k � 3�(2k).

To relate k to the local density, we make a bold assumption:
when atom k is displaced from its mean position, all other atoms
remain at their mean positions. The N-particle problem then
becomes a one-particle problem, and the POMF wk reduces to the
sum of pair interactions �ki(rk � ri

0) of atom k with every other atom
i, each confined to its mean position ri

0. The pair interaction �ki
depends on the atomic configuration in a complicated way. In
several recent treatments of protein conformational dynamics and
flexibility, harmonic pair interactions have been postulated (20–
23). Although �ki may be approximately harmonic near its mini-
mum (for the isolated atom pair), it is certainly not harmonic at the
separations of the vast majority of atom pairs in the mean config-
uration of the protein, where the second derivatives in k are to be
evaluated. In fact, most atoms i in the protein hardly interact at all

with the reference atom k and, therefore, do not contribute
significantly to k. In evaluating k, we therefore need to consider
only those nk atoms i whose mean positions are within some cutoff
distance RC of atom k, i.e., for which rki

0 � �rk
0 � ri

0� � RC. We can
then express k as a sum of contributions from these nk atoms, or
as k � nk �k, where �k is the mean of the nk atomic contributions.
We shall now argue that the dependence of k on k derives mainly
from local density (nk) variations.

Consider the radial distribution function gk(r), which, when
multiplied by 4� r2dr, gives the number nk(r) of nonhydrogen atoms
in a spherical shell of thickness dr at a distance r from reference
atom k. We compute this quantity by summing over the isotropic
displacement PDFs F� i(ui) for all other atoms i and taking the
isotropic average over the orientation of the vector r:

gk�r	 � �
i

�F� i�ui	� �
1

4�r �
i

exp� 	 R	 	 	 exp� 	 R� 	

�2��i	
1/2 rki

0 , [6]

where R� � (r � rki
0 )2�(2�i). This result is obtained by inserting

the Gaussian PDF F� i(ui) (see Eqs. 1, 4, and 5) and noting that
ui

2 � r2 � (rki
0 )2 � 2 r rki

0 cos 
, where 
 is the angle between r
and rki

0 . Fig. 1 shows gk(r) for each � carbon in parvalbumin;
similar results are obtained for other proteins. The first peak in
gk(r), with maximum at 1.5 Å and extending to about 3.5 Å,
corresponds to the covalent neighbors: 6–10 atoms linked to the
reference � carbon by 1–3 bonds. Except for a few � carbons near
the chain termini, gk(r) exhibits a second peak, with maximum
near 5 Å, produced by a much larger number of atoms. Although
close in space, most of these atoms are many bonds away from
the reference � carbon and therefore have predominantly non-
covalent interactions with it. We refer to them as noncovalent
neighbors.

By far the largest contribution to k comes from the covalent
neighbors. Because displacements of these atoms are highly cor-
related with displacement of the reference � carbon, the rigid-
environment approximation (ri � ri

0) is strongly violated. But
because the covalent neighbors are distributed in much the same
way around all � carbons (see Fig. 1), they hardly contribute to the
AMSD variation that we seek to model. We therefore ignore the
covalent neighbors and attribute k entirely to the noncovalent
neighbors. We must then also reinterpret the pair potential �ki as the
interaction of atom i with the cluster comprising atom k and its 6–10
covalent neighbors.

Fig. 1. Radial distribution of nonhydrogen atoms around each � carbon in
parvalbumin (2PVB), computed from Eq. 6. The thick black curve is the average of
the 107 gray curves.
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The mean contribution �k from the noncovalent neighbors
depends mainly on their mean positions. Because the position of the
second peak in gk(r) varies relatively little (see Fig. 1), whereas nk
varies by a factor 5 (see below), we attribute the variation of k with
k entirely to nk, writing k � nk �. We then arrive at the desired
result

�k �
3

2�

1
nk

, [7]

predicting that the AMSD is inversely proportional to the contact
density nk, i.e., the number of noncovalent neighbors. The set of
approximations leading to Eq. 7 will be referred to as the local
density model (LDM). The LDM can predict the AMSD variation
within a protein but, because the parameter � is undetermined, it
cannot yield the mean AMSD. In comparing LDM predictions with
experimental results, we therefore scale the calculated AMSDs
such that ��k

LDM� � ��k
XPT�. This scaling takes care of the temper-

ature dependence of the AMSDs; if the (renormalized) pair
interactions are temperature independent, it follows from the
foregoing that � � T�1.

Selection of Proteins. To test the hypothesis that AMSDs scale with
local density according to Eq. 7, we use a set of 38 crystal structures
taken from the current (Feb. 25, 2001) PDB SELECT list of structures
with less than 25% sequence identity between any two proteins (25).
From this list, we selected the structures of highest resolution
(�1.30 Å) and best quality (R factor � 0.16), retaining only
single-chain proteins with more than 50 residues. Because experi-
mental AMSDs depend to some extent on the refinement method,
we included only structures refined with the program SHELXL (26),
the most widely used protocol for ultra-high-resolution data. Al-
though nearly all of the selected structures were refined with
anisotropic Debye–Waller factors, we use only the isotropic
AMSDs. (Relevant characteristics of the analyzed protein struc-
tures are collected in Table 2, which is published as supporting
information on the PNAS web site, www.pnas.org).

Assessment of LDM Predictions. Two different indicators, a merit
function and a measure of association, are used here to quantita-
tively assess the agreement between calculated (�k

LDM) and exper-
imental (�k

XPT) AMSDs. For most proteins, the �k distribution is
highly skewed, with a sharp cutoff on the low-�k side, corresponding
to atoms in densely packed core regions, and a pronounced tail on
the high-�k side, corresponding to atoms in flexible loops or chain
termini. The conventional merit function, the mean-square devia-
tion, and the usual measure of association, Pearson’s linear corre-
lation coefficient, are unsuitable here because they can be domi-
nated by a few outliers (27). We therefore use more robust
indicators. As merit function, we use the relative mean absolute
deviation, i.e., ���k

LDM � �k
XPT�� divided by ���k

XPT � ��k
XPT���.

Normalization by the experimental �k variation allows us to com-
pare � values from protein structures determined at ambient and
cryogenic temperatures. As a measure of association, we use the
Spearman rank-order correlation coefficient, �, which is based on
the rank order of �k rather than its actual value (27). In contrast to
Pearson’s coefficient, the nonparametric correlation coefficient �
can be meaningfully compared among different protein structures.

The Contact Density. Although the LDM can be used to predict
AMSDs for any atom type, we shall mainly discuss � carbons here.
The contact density nk is then the number of nonhydrogen atoms
within a distance RC from the reference � carbon k. The cutoff
radius RC should be chosen to include most of the second peak in
gk(r). For the calculations reported here, we have fixed RC to the
radial distance, R��

(2), of the second minimum in the C�–C� radial
density, 4� r2g��(r). For our data set, R��

(2) has a mean of 7.35 Å and
a standard deviation of only 0.18 Å. Virtually identical results are

obtained for any RC value in the range 7–10 Å (see Fig. 6, which is
published as supporting information on the PNAS web site).

The contact density can be obtained simply by counting the
number of nonhydrogen atoms whose mean positions are within RC
of atom k. However, we can compensate to some extent for the
shortcomings of the rigid-environment approximation by taking
into account thermal displacements of neighbor atoms in the
calculation of nk. We thus obtain nk by integrating the radial density
nk(r) � 4� r2gk(r), with gk(r) given by Eq. 6, from r � 0 to r � RC.
Because this requires knowledge of the AMSD variation that we
want to predict, we perform a self-consistent calculation starting
from a flat AMSD profile. When integrating nk(r), we should also
use a lower cutoff of about 3.5 Å to exclude the covalent neighbors.
However, because nk is heavily dominated by noncovalent neigh-
bors, a lower cutoff has little effect.

The C� contact density distribution P(n), calculated in this way
with RC � 7.35 Å, is shown in Fig. 2 for the entire data set. For each
of the 38 proteins, the contact density spans essentially the whole
range, n � 20–100, of the cumulative distribution. The small-n flank
of P(n) is caused by � carbons in exposed termini and loops. On the
other flank, P(n) drops sharply as the close-packing limit of n � 100
is approached. At intermediate densities, P(n) exhibits a broad
plateau for n � 60–90. The mean contact density for all 6,231 �
carbons is 67.5.

Some � carbons have low contact density simply because they are
near the surface of the protein. To examine this geometric contri-
bution to the contact density, we calculated P(n) for a set of 38
uniformly packed spherical ‘‘proteins’’ with the equivalent-sphere
radii of the real proteins. The resulting P(n) has two striking
features (see Fig. 2). First, it is dominated by a large peak (truncated
in Fig. 2) from atoms that are further than RC from the surface.
These ‘‘core’’ atoms all have the same contact density, which we
have set to 100. Second, P(n) decreases with n over a wide range,
because the number of atoms in a spherical shell decreases towards
the center. Because P(n) for real proteins displays neither of these
features, we conclude that it mainly reflects local variations in
packing density (including the detailed shape of the surface).

The contact density used in the following to predict AMSDs
includes probability density from all nonhydrogen atoms within a
sphere of radius RC, whether or not these atoms belong to the same
protein molecule as the reference atom k. In other words, nk may
contain contributions from atoms in neighboring protein molecules

Fig. 2. Normalized contact density distribution (binned to integral n values) for
all 6,231 � carbons in the set of 38 proteins (black) and for the uniform-sphere
model described in the text (gray). For the latter case, the n � 100 bar has been
truncated at about 25% of its real height, P(100) � 0.196.
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in the crystal. The contact density may also contain contributions
from cofactors, such as heme groups, iron–sulphur clusters, and
specifically bound metal ions and, in a few cases, from internally
bound substrates. On the other hand, nk does not include any
contributions from water molecules or cosolvents. (In a separate
calculation on two BPTI structures, inclusion of the four internal
water molecules was found to slightly improve the agreement
between predicted and experimental AMSDs.) Most of the crystal
structures in our data set contain multiple conformations of several
residues, particularly for side-chains. For such residues, the domi-
nant conformation and its associated AMSDs were used for the
analysis.

Results
We consider first backbone flexibility, comparing predicted and
experimental AMSD profiles for the � carbons along the polypep-
tide chain. Fig. 3 shows such profiles for Serratia marcescens
endonuclease (241 residues). Predicted AMSDs were calculated
self-consistently by using Eqs. 6 and 7 with RC � 7.32 Å. The LDM
reproduces all prominent peaks in the AMSD profile and even
captures minor features, such as the periodic AMSD variation often
seen in � helices. The prediction quality indicators are � � 0.54 and
� � 0.82. (For a compilation of quality indicators for all protein
structures, see Table 3, which is published as supporting informa-
tion on the PNAS web site.)

The LDM yields consistently accurate predictions of AMSD
profiles; for our set of 38 protein structures, � � 0.72 � 0.11 and
� � 0.70 � 0.09 (mean � one standard deviation). For 82% of these
structures, � � 0.78 and � � 0.60. The indicators � and � do not
correlate with protein size or with secondary structure content (see
Fig. 7, which is published as supporting information on the PNAS
web site).

Among the analyzed structures, 31 were determined at cryogenic
temperatures (85–120 K) and only 7 at ambient temperatures
(287–300 K). Although proteins are less flexible at low tempera-
ture, any static lattice disorder should be unaffected by cryogenic
quenching. The effect of lattice disorder might be modeled by fitting
the two parameters in �k � �0 � c�nk to the experimental AMSDs.
Because the relation between �k and 1�nk remains linear, the
correlation coefficient is not affected. Although the ambient-
temperature structures have larger mean AMSD than the cryo-
structures (0.54 versus 0.43 Å2), the agreement between predicted
and experimental AMSD profiles is hardly better for the room-
temperature structures: � � 0.70 � 0.11 versus 0.73 � 0.11 and � �
0.70 � 0.12 versus 0.70 � 0.08. This near-invariance suggests that
lattice disorder does not contribute significantly to our data set, in
accordance with the expectation that crystals diffracting to atomic
resolution should exhibit little mosaicity (3).

As seen from Table 1, the self-consistent calculation of the
contact density, according to Eq. 6, leads to a small improvement
compared to a fixed-atom calculation. When the contact density
includes only atoms in the same protein molecule as the reference
� carbons, the predicted AMSD profile often exhibits peaks that are
absent in the experimental profile. These spurious peaks tend to
coincide with loop- and turn regions in intimate contact with
adjacent protein molecules. In the LDM, the effect of such crystal
contacts can be taken into account by including all nonhydrogen
atoms in neighboring proteins that are within RC of any of the
reference � carbons. This inclusion markedly improves the agree-
ment with experiment (see Table 1, rows b and d), particularly for
small proteins, which have a larger fraction of their residues
involved in crystal contacts. Fig. 4 illustrates the effect of crystal
contacts for Bacillus caldolyticus cold-shock protein (66 residues,
RC � 7.71 Å). The agreement with experiment is clearly better when

Fig. 3. Experimental (dots) and calculated (curve) AMSD profiles for the � carbons in S. marcescens endonuclease (1QL0). Predicted AMSDs are based on contact
densities including all nonhydrogen protein atoms in the crystal. Experimental points are color coded according to secondary structure: � helix (blue), � strand (red),
and turn (orange).

Table 1. Indicators for model predictions of C� AMSDs for full protein set

Model Density* ���† Range of � ���† Range of �

a LDM all�ref�fix 0.89 � 0.27 0.63–2.19 0.62 � 0.09 0.41–0.80
b LDM all�ref�scd 0.86 � 0.26 0.62–2.09 0.64 � 0.09 0.43–0.81
c LDM all�xtl�fix 0.75 � 0.12 0.52–1.21 0.67 � 0.09 0.45–0.83
d LDM all�xtl�scd 0.72 � 0.11 0.53–1.13 0.70 � 0.09 0.49–0.85
e P-GNM C��ref�fix 1.08 � 0.42 0.65–3.06 0.58 � 0.17 0.05–0.84
f LDM C��ref�fix 1.02 � 0.32 0.74–2.58 0.51 � 0.11 0.20–0.70
g LDM C��ref�scd 0.97 � 0.29 0.68–2.32 0.58 � 0.08 0.42–0.75

In all calculations, the cutoff radius RC was set equal to the distance, R��
(2), of the second minimum in the C�–C�

radial density.
*Contact density is based on nonhydrogen atoms (all) or C� atoms (C�) in reference molecule (ref) or entire crystal (xtl)
and is calculated with fixed (fix) or self-consistently distributed (scd) atoms.

†Mean value � one standard deviation.
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the contact density includes contributions from crystal neighbors
(� � 0.77, � � 0.71) rather than just atoms in the reference
molecule (� � 1.36, � � 0.58). The strongest crystal interaction,
clearly manifested in the AMSD profile, involves a loop region
(G21, E22, G23) in close contact with the N terminus (M1, Q2, R3)
of a symmetry-related molecule.

The LDM is not limited to � carbons but can be applied to any
or all atom types. Fig. 5 shows the AMSD profile for all 460
nonhydrogen atoms in a Kunitz-type domain from collagen (58
residues, RC � 7.40 Å). The LDM correctly predicts that side-chain
atoms are more flexible than adjacent backbone atoms and, in most
cases, also reproduces the relative flexibility of different side-
chains. The overall agreement with experiment is comparable to
that found for � carbons only. Fig. 5 also shows, in several instances,
that the LDM correctly identifies side-chains with reduced flexi-
bility because of crystal contacts.

Discussion
Interactions, Dynamics, and Flexibility. Considering its extreme sim-
plicity, the LDM is remarkably successful. Its central idea, that
AMSD profiles are governed by spatial variations in packing
density, might seem to ignore all interactions apart from excluded
volume. In particular, the LDM does not recognize covalent bonds
or hydrogen bonds explicitly. However, all types of interactions,

specific as well as nonspecific, are implicitly manifested in the LDM
via their effect on the local density. Elements of regular secondary
structure, such as � helices and � sheets, not only are extensively
hydrogen-bonded but also are densely packed. Disulfide bridges not
only impose connectivity constraints on conformational motions,
but, by forcing backbone segments together, also increase the local
atomic density. Thus, for example, the LDM accurately predicts the
AMSDs of all six disulfide cysteine residues in the Kunitz-type
domain C5 (see Fig. 5).

Protein conformational flexibility may be thought of and ratio-
nalized in different ways. The most widely adopted viewpoint is to
interpret AMSDs in terms of conformational motion. Ultimately,
however, both flexibility and dynamics are determined by interac-
tions. It is therefore possible, in principle, to predict AMSDs from
detailed interaction models. This approach is computationally
demanding and has met with limited success so far, partly because
interactions in proteins are extremely complex and not yet fully
understood. By relating flexibility directly to local density, the LDM
offers a conceptual shortcut that bypasses the intricacies of detailed
interaction models.

As demonstrated here, variations in small-amplitude structural
flexibility within native proteins are largely governed by spatial
inhomogeneities in packing density. By unifying these aspects of
protein structure, the LDM contributes to our understanding of the
physical properties of proteins. On the other hand, the success of the
LDM implies that (isotropic) crystallographic B factors supply very
little independent information not already present in the mean
atomic coordinates. It should be possible to improve the accuracy
of LDM predictions by including ordered water molecules buried in
internal cavities or trapped at crystal contacts, by using weight
factors for different (united) atom types, or by optimizing the cutoff
radius for each protein structure. Yet, truly quantitative accuracy
cannot be expected from such a simple model. Further insight about
the determinants of structural flexibility might come from a sys-
tematic study of those instances where the LDM predictions are
least accurate. In some cases, such discrepancies might be traced to
unresolved conformational substates; in other cases, they might
reflect deficiencies in the model.

Other AMSD Correlations. Protein flexibility correlates with a variety
of physical properties, such as solvent exposure, distance from
center-of-mass, and secondary structure (3–5, 12, 28, 29). The most
frequently invoked correlation is that with solvent-accessible sur-
face area (SASA) (5, 12, 29). The simplest linear relationship
between AMSD (�k) and SASA (ak) of atom k is �k � �0 � cak.
Like the uniform-sphere model discussed above, this model pre-
dicts that all buried atoms have the same AMSD, �0. Although the
SASA model identifies many of the prominent peaks in the AMSD

Fig. 4. Experimental (dots) and calculated (curves) AMSD profiles for the �

carbons in B. caldolyticus cold-shock protein (1C9O). Predicted AMSDs are based
on contact densities including all nonhydrogen protein atoms in the crystal (thick
black curve) or only atoms in the same protein molecule as the reference �

carbons (thin blue curve). Experimental points are color coded according to
secondary structure: � helix (blue), � strand (red), and turn (orange).

Fig. 5. AMSD profile for all nonhydrogen atoms in the Kunitz-type domain (C5) from the �-3 chain of human type VI collagen (2KNT). Circles represent experimental
backbone (filled) and side-chain (open) AMSDs, and curves represent predicted AMSDs on the basis of contact densities including all nonhydrogen protein atoms in
the crystal (thick black curve, � � 0.63, � � 0.72) or only atoms in the same protein molecule as the reference atoms (thin blue curve, � � 0.64, � � 0.76). Experimental
points for atoms in disulfide Cys residues are colored orange.
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profile, arising from exposed loop- and turn residues, the predicted
AMSD variation is far too small, and most of the fine structure is
lost. To quantitatively assess the SASA model, we adjusted the two
parameters �0 and c by minimizing the mean absolute deviation
between predicted and experimental � carbon AMSDs, using for ak
the SASA (1.4-Å probe radius) for the backbone atoms of residue
k. This yields rather poor agreement for our data set. For example,
for protein G Igg-binding domain III (2IGD, 61 residues), the SASA
model yields � � 0.85 and � � 0.49, whereas the LDM yields � �
0.53 and � � 0.83; and for S. marcescens endonuclease (1QL0, 241
residues), the SASA model yields � � 0.82 and � � 0.54, whereas
the LDM yields � � 0.54 and � � 0.82.

Another approach for predicting � carbon AMSDs in proteins
(21) has been inspired by a simple model of rubber elasticity (30,
31). In this Gaussian phantom network model (GNM), an elas-
tomer material is modeled as a network of noninteracting polymer
segments, where any two connected junctions are subject to a
restoring force proportional to their separation and with a force
constant inversely proportional to the segment contour length (30).
This force, which increases with separation, is entirely generated by
the configurational entropy of the polymer segment; all mechanical
interactions, even excluded volume, are neglected. To prevent the
model network from collapsing, the mean positions of the junctions
are taken to be fixed by external forces. The GNM leads to a
harmonic POMF wk(uk) and, consequently, to a Gaussian displace-
ment PDF Fk(uk) (30, 31).

In the protein version of the GNM, here denoted as P-GNM, the
� carbons are regarded as junctions in a virtual network charac-
terized by pairwise interactions of the form �ki � (�2) �ki �rki �
rki

0 �2 � (�2) �ki �uk � ui�2, where �ki � 1 if rki
0 � RC and �ki � 0

otherwise. In contrast to the entropic interaction in the original
GNM, this pair potential is postulated without an underlying
physical model. This fundamental difference between the two
models reflects the fact that the junctions are physically linked in the
real network (GNM) but not in the virtual network (P-GNM). The
real interaction between � carbons is negligibly weak and mono-
tonically decaying (as rki

�6) at most separations of interest here.
As in the original GNM, the postulated harmonic form of the

pair interaction leads to a Gaussian displacement PDF with the
AMSD given by

�k � �3kBT�	�
i

Uki
2 �Dii . [8]

Here, D is the diagonal eigenvalue matrix, and U is the orthogonal
eigenvector matrix that diagonalizes the symmetric matrix � ac-

cording to UT � U � D. The so-called Kirchoff adjacency matrix �
(32) has off-diagonal elements �ki � ��ki, whereas its diagonal
elements are the C�–C� contact densities, �kk � �i�k�ki � nk.
When expressed in terms of the atomic displacements uk, the
partition function diverges, because the adjacency matrix is singular
(rank N � 1) in the P-GNM. Therefore, the inverse of � does not
exist. In Eq. 8, the zero eigenvalue, corresponding to a uniform
displacement of all atoms, is omitted from the sum. The adjacency
matrix is dominated by its diagonal elements, giving the number of
� carbons within RC (averaging 8.3 � 0.6 for our data set). If all
off-diagonal elements (�1 or 0) in � are set to zero, one obtains
�k � 3 kBT�( nk), which coincides with the LDM result in Eq. 7,
with the correspondence � 7 �(2 kBT).

We have tested the P-GNM on our set of 38 high-quality protein
structures. As seen from Table 1 (rows d and e), the LDM predicts
� carbon AMSDs considerably more accurately than the P-GNM.
It is also of interest to compare P-GNM and LDM predictions when
both models are based on � carbons only. As seen from Table 1
(rows e and f), the off-diagonal elements of � do not substantially
improve the AMSDs. (This is also the case when both models are
based on all nonhydrogen atoms.) Furthermore, when the contact
density is calculated self-consistently, the LDM performs slightly
better (and more consistently) than the P-GNM, even when only �
carbons are included in the contact density (rows e and g).

A major weakness of the P-GNM is its obscure physical basis.
Although the mathematical formalism conforms closely to the
original GNM, the underlying physics is quite different. For exam-
ple, in the original GNM,  is proportional to T, making the AMSDs
independent of temperature, in contrast to what is observed for
proteins (33). The P-GNM approach has been justified a posteriori
through its agreement with experimental AMSDs (34, 35). We
believe that the reason for the relative success of the P-GNM can
be found in the physical justification given here for the LDM, to
which it reduces after a numerical approximation (neglect of
off-diagonal � elements). The LDM is not only more accurate than
the P-GNM; it is also more computationally efficient. Because it
does not involve any matrix diagonalization, the LDM can readily
be used to predict AMSDs for all nonhydrogen atoms. To the extent
that NMR derived second-rank orientational order parameters for
peptide NOH bonds correlate with (crystal-contact-corrected)
x-ray-derived AMSDs (29, 35–37), they can also be predicted by
the LDM.
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