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We describe a new approach to explore and quantify the sequence
space associated with a given protein structure. A set of sequences
are optimized for a given target structure, using all-atom models
and a physical energy function. Specificity of the sequence for its
target is ensured by using the random energy model, which keeps
the amino acid composition of the sequence constant. The de-
signed sequences provide a multiple sequence alignment that
describes the sequence space compatible with the structure of
interest; here the size of this space is estimated by using an
information entropy measure. In parallel, multiple alignments of
naturally occurring sequences can be derived by using either
sequence or structure alignments. We compared these 3 indepen-
dent multiple sequence alignments for 10 different proteins, rang-
ing in size from 56 to 310 residues. We observed that the subset of
the sequence space derived by using our design procedure is
similar in size to the sequence spaces observed in nature. These
results suggest that the volume of sequence space compatible with
a given protein fold is defined by the length of the protein as well
as by the topology (i.e., geometry of the polypeptide chain) and the
stability (i.e., free energy of denaturation) of the fold.

The sequences of naturally occurring proteins are defined by
evolutionary selective pressure, which is controlled by a fine

balance of function, stability, and kinetics. Although most
random mutations of sequences are unlikely to enhance stability
or function, they can be accepted by natural selection as long as
they are neutral (or near neutral). As a consequence, the size of
the sequence space compatible with a given protein fold is very
large (although small compared with the full space a protein
sequence can explore, whose size is 20N, where N is the number
of residues of the protein). The number of compatible amino
acids at a given position in a protein is structure-dependent:
some local structures such as tight turns have energetic con-
straints that can be satisfied only by small amino acids such as
glycine, alanine, or proline. These differences at the residue level
extend to differences among whole protein domains. The 32,000
protein domains contained in the Protein Data Bank (PDB) as
of March 1, 2001 can be clustered into 564 different structural
families or folds, and the sizes of these families are found to vary
greatly (1). A large number of these folds have a single repre-
sentative, whereas other folds, such as the TIM fold or the Ig
fold, have hundreds of representatives in the PDB (2). The
question arises whether these differences are a consequence of
differences in function and�or stability. We cannot also exclude
the effect of bias in the sampling properties of the PDB database,
which contains a very small subset of all proteins that were
chosen for their biological interests as well as for the feasibility
of their structure determination. In this article, we focus on the
influence of the stability of a protein (i.e., its free energy of
denaturation) on the size of its compatible sequence space.

Many proteins maintain their structure while undergoing
extensive mutations. For example, alanine substitution of 10
consecutive residues in bacteriophage T4 lysozyme leads to only
minor structural differences (3). On the other hand, a single
double mutation can generate a dramatic structural change, as
observed in the Arc repressor for which the interchange of the
sequence position of residues 11 and 12 leads to a new structure

in which each �-strand is replaced by an �-helix (4). These
seemingly conflicting results have lead to a complicated picture
of protein sequence evolution: it is not clear whether a protein
fold can evolve into a new fold by accumulation of simple point
mutations (5). As a first step toward a better understanding of
evolution, studies have focused on characterizing the protein
sequence space compatible with a given protein structure, the
so-called inverse folding problem (6, 7). A large range of
methods, including in vitro experiments mimicking evolution
(8–10) and fully automated computer protein design (11–13),
has been proposed for searching sequences that would stabilize
a given protein structure with improved stability or with a new
activity. Here we propose an extension of these methods and
present a computational approach, which derives the size of the
sequence space compatible with a given protein structure. Our
results are validated by comparison with the size of the sequence
space derived from naturally observed proteins.

Methods
Characterizing Sequence Space. A sequence, Ai, that is compatible
with a target protein structure, C, is characterized by its energy,
E(Ai,C), corresponding to the energy of the model protein
obtained by building the side chains corresponding to Ai onto the
backbone of C (for a full definition of E, see ref. 14). This energy
is derived from estimates of the physical forces that stabilize
native protein structures: it includes van der Waals interactions,
electrostatics, and an environment-free energy (15). The dis-
tance between two sequences, Ai and Aj, is defined as d(Ai, Aj) �
100 � I(Ai, Aj), where I is the number of identical residues
expressed as a percentage of the length of the shorter sequence.

Building Model Proteins. The compatibility of a sequence A with
a protein C is tested by first threading it on the backbone
template of the known native structure of C. Side chains are
positioned by using an iterative self-consistent mean field ap-
proach (16). The procedure iteratively refines a conformational
matrix of the side chains of the protein, CM, such that its current
element at each cycle, CM(i, j), is the probability that side chain
i of the protein adopts the conformation of its possible rotamer
j. Interactions and hence probabilities depend solely on a
Lennard Jones function for van der Waals interactions (electro-
statics and solvent interactions are ignored). The rotamer with
the highest probability in the optimized conformational matrix
defines the conformation of the side chain in the final model.

Sequence Design: Stability vs. Specificity. A sequence, A, designed
for a target conformation, C, must be stable for that conforma-
tion. This stability is reached by minimizing E(A, C). Sequence
A must also be specific to C, i.e., incompatible with competing
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folds. A rigorous solution to this problem requires simultaneous
and complete explorations of sequence space and conformation
space. We have shown, however, that under the approximation
of the random energy model (17–19), specificity can be achieved
by optimization in sequence space alone, provided that the
amino acid composition of the sequence is held constant (14).

Canonical Sequence Design: Free Energy Optimization. The thermo-
dynamic stability of the protein A with conformation C is
measured by the difference in free energies between the state C
and a denatured state U:

�G�A, C� � G�A, C� � G�A, U�. [1]

The energy difference between two sequences A and B is given
by

��G�A3 B, C� � �G�B, C� � G�A, C�� � �G�B, U� � G�A, U��.
[2]

In the case of a canonical sequence optimization with fixed
amino acid composition (i.e., under the approximation of the
random energy model), we have (14)

G�A, U� � G�B, U�. [3]

As a consequence, the denatured states have little influence in
the design process if the sequence composition is kept fixed. In
our previous work (14), we have also shown that optimization of
��G(A � �B, C) is equivalent to optimizing �E(A � �B, C).

Exploration of Protein Sequence Space: Sequence Space Annealing
(SSA). Our method for exploring protein sequence space is based
on a genetic algorithm, and is similar in essence to the concept
of ‘‘conformational space annealing’’ introduced by Scheraga
and coworkers (20, 21). For a target protein structure, C, we start
with a population of N sequences, all with the same given amino
acid composition, stored in a sequence ‘‘bank.’’ For each se-
quence, Ai, a model structure is built, and its energy is evaluated
and stored as E(Ai, C). The initial bank is constructed such that
its N sequences are distributed randomly in the sequence space,
and proper sampling is enforced by requiring that the initial
distance d(Ai, Aj) between any sequences Ai and Aj in the bank
is larger than a preset cutoff value, Dcut. Optimization is per-
formed as follows. Starting with sequence Ai, M new sequences
Bm are generated, each derived by random exchange of the
amino acid types of K randomly chosen positions in Ai. Model
structures are built for each Bm, and the corresponding energies
are stored in E(Bm, C). Each new sequence Bm is characterized
by the sequence Ac in the bank that is closest to Bm. If the
distance between Ac and Bm is smaller than Dcut and E(Bm, C)
is smaller than E(Ac, C), Ac is replaced by Bm in the bank. If, on
the other hand, Bm and Ac are further apart than Dcut, Bm is
added to the bank. The sequences in the bank are then ordered
with increasing energies, and the N ‘‘best’’ (i.e., with lowest
energies) are kept. The procedure is repeated for all Bm. The
next sequence of the bank is then chosen as a new seed. A full
cycle of is reached when all N sequences of the bank have been
used as seeds to generate new sequences. The updated bank
serves then as input to the following cycle, and the full procedure
is repeated until the system has equilibrated and the variance of
the sequence space described by the bank remains steady.
Convergence is accomplished by initially setting the number of
residues that are shuffled when generating the new sequences, K,
to a large value (usually K is set to 20% of the total length of the
protein), and then slowly reducing it to 2, the smallest value
allowed here. Large values of K allow sampling of entire
sequence families that are compatible with the target fold,
whereas small values of K limit the search to improving the

representative of each family (in which case the procedure
becomes equivalent to a parallel Monte Carlo procedure). The
design of 100 sequences for a protein of 100 residues requires
40 h on a 533-MHz alpha-powered computer; this computing
time varies approximately linearly with protein size.

Sequence Weights in Multiple Alignment. Sequences in a multiple
sequence alignment are weighted to reflect their similarities with
other sequences in the alignment. We have chosen the method
of Godzik and coworkers (22) to derive these weights. First, the
alignment score L(Ai, Aj) of two sequences Ai and Aj in the
multiple sequence alignment is calculated directly by using the
BLOSUM62 substitution matrix. This score is transformed into a
similarity score SIM(Ai, Aj), according to

SIM�Ai, Aj� � � L�Ai, Aj�

min�L�Ai, Ai�, L�Aj, Aj��
, 0�. [4]

These similarity scores have values between 0 and 1. The weight
�(Ai) of each sequence Ai is then computed based on its
similarity scores to all other sequences in the multiple alignment:

��Ai� �
1

1 � �
j

SIM�Ai, Aj�
2 . [5]

Entropy As a Measure of the Size of Sequence Space. The sequence
information contained in a multiple sequence alignment is first
converted into a profile matrix, which consists of an array of
vectors, one for each position in the sequence. Each vector
contains 21 values representing the frequencies of occurrence of
all 20 types of amino acids plus the gap at the position consid-
ered. The frequency of occurrence of an amino acid type, a, at
position, k, in the multiple sequence alignment is computed as
a weighted sum of counts in the aligned sequences divided by the
total weight of the alignment. More precisely,

f�a, k� �

�
i � 1

N

��Ai���type�i, k� � a�

�
i � 1

N

��Ai�

, [6]

where N is the total number of sequences in the alignment,
type(i, k) defines the type of amino acid observed at position
k in sequence Ai, and � is a step function, which equals 1 if
type(i, k) is a, and 0 otherwise.

The diversity of the multiple sequence alignment at position
i is derived from the frequencies by using the common infor-
mation theory definition of entropy

S�i� � � �
a � 1

21

f�a, i�ln� f�a, i��. [7]

The total entropy S of the multiple sequence alignment is
defined as the sum of the entropy score at the individual
positions.

Our Protein Test Set. The SSA procedure is tested on our standard
set (23) of 10 proteins: 2ci2, chain I (65 residues), 1ctf (68
residues), 2hsp (71 residues), 4icb (76 residues), 1lmb, chain 3 (92
residues), 5mbn (153 residues), 7pcy (98 residues), 1pgb (56
residues), 5pti (58 residues), 1tim, and chain A (247 residues)
plus one larger protein, 1ede (310 residues).
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Results
(i) Subsets of Sequence Space Compatible with 1ctf and 1tim. The
SSA procedure was first tested on two proteins with PDB ID
codes 1ctf and 1tim. Protein 1ctf is a small, highly stable �	�
protein of 68 residues whose fold is nearly unique in the present
PDB database. Protein 1tim is a large ��� of 247 residues whose
���-barrel fold is observed in many proteins in the PDB,
covering several families with different functions. For each
protein, we optimize a set of 100 sequences describing its
compatible sequence space. A two-dimensional projection of
this space at the beginning and at the end of the optimization is
shown in Fig. 1. All optimized sequences were found to be
specific to their target backbone in computer threading exper-
iments using THREADER2 (24) with a database of 1,900 repre-
sentative backbones. The 100 sequences optimized for 1ctf were,
on average, 36% identical to the native sequence of 1ctf; the
corresponding number drops to 14% in the case of 1tim. Most
interestingly, the mean sequence identity among all pairs of
sequences designed for 1ctf is 52%, whereas the mean sequence
identity for sequences designed for 1tim is much lower at 20%.

The 1ctf sequences were included in a multiple sequence
alignment, which in turn is described by a profile, i.e., a position-
specific mutation matrix. The profile is generated by using the
fold and function assignment system (FFAS) algorithm intro-
duced by Godzik and coworkers (22). The information content
of this profile is quantified by using an entropy measure (25).
When all 20 types of amino acids are allowed, the average
entropy per residue is 3.0 [i.e., log(20)]. When the fixed amino
acid composition is taken into account, the upper limit for the
entropy per residue is smaller (2.2 for 1ctf and 2.8 for 1tim). We
find that the average entropy per residue for the designed
sequences for 1ctf is 0.94, corresponding to an average of 2.6
types of amino acids allowed at each position of 1ctf. The same
analysis performed on the 100 sequences designed for 1tim yields

an average entropy per residue for 1tim of 1.94, corresponding
to an average of 7 types of amino acids allowed at each position
in 1tim, on average. Fig. 2, which maps sequence variability onto
the structure, illustrates this difference between 1ctf and 1tim.
The low entropy per residue of designed sequences indicates a
significant decrease in the size of the sequence space compatible
with a structure when structural and stability constraints are
taken into account, in agreement with recent studies on mea-
suring sequence space (26, 27). Most importantly, however, we
find that the size of this sequence space reflects the usage of the
fold observed in naturally occurring proteins.

(ii) Two Proteins of Similar Lengths Can Accommodate Subsets of
Sequence Space of Different Sizes. The size of the sequence space
trivially depends on the size of the protein considered (20N

sequences of length N). To assess the role of other factors in
defining the size of this sequence space, the procedure described
above was repeated on two proteins of similar size, 1ctf (68
residues) and 2hsp (71 residues). As already mentioned, the
protein 1ctf is a small, highly stable �	� protein whose fold is
nearly unique. On the other hand, 2hsp is a small � protein whose
fold (the SH3 fold) is observed in many proteins in the PDB. For
each protein, two measures of the size of its sequence space are
derived.

First, the sequences of all proteins whose structures are
homologous to the protein of interest are extracted from the fold
classification based on structure–structure alignment of proteins
(FSSP) database (28). We use a cutoff of Z � 4 for defining
structural homology, where Z is the Z score defined by FSSP.
The structural alignments of these homologous proteins are used
to derive a structure-based multiple alignment, whose diversity
is measured by its sequence entropy, Sstr. The structural align-
ments for 1ctf and 2hsp contain 4 and 24 proteins, respectively.

Fig. 1. The design of 100 sequences compatible
with the topology of 1ctf (A and C) and 1tim (B and
D). A two-dimensional projection of the sequence
space spanned by these sequences at the beginning
of the optimization is shown in A and B, whereas C
and D illustrate the size of this sequence space at
then end of the optimization, after 80 cycles of SSA.
(A–D) The position of the native sequence is set to
the origin (0,0) and shown as a gray square. This
two-dimensional representation of sequence
space is created by using a nonlinear mapping
procedure (23).
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We find that the average entropy per residue for these align-
ments for 1ctf and 2hsp is 0.99 and 1.57, respectively.

Second, we optimize for each protein a set of 100 sequences
describing its compatible sequence space. These sequences are
stored in a multiple sequence alignment, which is transformed
into a profile. The diversity of this profile is described by using
both the entropy per residue and the total entropy Sdes. We find
that the average entropy per residue for the sequence-based
alignments for 1ctf and 2hsp are 0.94 and 1.70.

In Fig. 3, we plot the sequence entropy per residue as a
function of the position in the protein sequence for 1ctf and 2hsp.
First, we note that the sequence spaces compatible with two
proteins of similar size can have significantly different sizes.
Second, the calculated design entropy correlates well on average

with the observed structural entropy. The latter describes the
diversity in sequence space observed among known proteins
sharing the similar fold. The former is the result of a calculation
that depends on the geometry of the protein backbone, on the
amino acid composition of the native sequence of the protein,
and on the stability (i.e., free energy, see section i) of the fold.

Four residues in 1ctf (positions 25, 31, 51, and 62) and one
residue in 2hsp (position 44) have low design entropy: they
correspond either to glycines or alanines in the native sequence
at structurally constrained regions [i.e., positive (�, 	) torsion
angles]. These low values are in fact artifacts of our calculations
in which we maintain a rigid geometry for the backbone of the
protein. The same residues have higher structural entropy values.

Fig. 3 illustrates the importance of topology and stability for

Fig. 2. The design entropy of 1ctf and 1tim. The PDB structures of 1ctf and 1tim are drawn by using MOLSCRIPT (38), and the residues are colored according to
their entropy values. The scale of color was chosen such that blue represents residues with small entropy values (with dark blue corresponding to an entropy
value of 0), whereas red represents residues with high entropy values (with a maximum of 2.65). 1ctf appears much ‘‘colder’’ than 1tim, with a mean entropy
value of 0.94, compared with 1.94 for 1tim.

Fig. 3. The entropy in sequence space of each residue of 1ctf and 2hsp is plotted against the position of the residue in the sequence of the protein. The
continuous line shows the design entropy Sdes, whereas the dashed line shows the average entropy per residue derived from the sequences of proteins whose
structure in the PDB were found similar to the structure of 1ctf or 2hsp, according to the FSSP database (28).
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defining the size of the sequence space compatible with a protein
structure. The amino acid composition is also considered, and
this will be discussed below.

(iii) Geometry and Stability Define the Subset of the Sequence Space
Compatible with a Protein Structure. To investigate further the
relationship between the sequence space compatible with a given
protein fold derived from design experiments and the diversity
of naturally occurring sequences found to adopt this fold, the
procedure described above was repeated on nine additional
proteins listed in Methods. These proteins vary in size from 56 to
310 residues, and cover all four classes of protein folds. For each
protein, three different measures of its sequence space are
derived. First, 100 sequences were designed by using the SSA
procedure and stored in a multiple sequence alignment. This
sequence alignment was transformed into a profile, whose
diversity (Sdes) is described by using the entropy measure de-
scribed in Methods. Second, the native sequence of the protein
is compared with the nonredundant database of protein se-
quences built by combining the SwissProt, trEMBL, and new-
trEMBL databases (29, 30) [release date April 2001 (640,428
sequences)]. Comparison is performed by using five iterations of
PSI-BLAST (31) with an E-value cutoff of 0.00001. The resulting
set of sequences is converted into a profile, which in turn is
characterized by its sequence entropy, Sseq. Third, the sequences
of all proteins whose structures are homologous to the protein
of interest are derived from the FSSP database (28). We use a
cutoff of Z � 4 for defining structural homology, where Z is the
Z score defined by FSSP. The structural alignments of these
homologous proteins are used to derive a structure-based mul-
tiple alignment, whose diversity is measured by its sequence
entropy, Sstr.

The three measures of the size of sequence space, Sdes, Sseq,
and Sstr, are compared in Fig. 4. For most proteins, the entropy
derived from sequence (Sseq) compares well with the entropy
derived from structural information (Sstr). It is noteworthy that
Sseq and Sstr are two independent measures of the size of the same
sequence space, derived from two independent databases. The
good correlation observed indicates that if a bias exists in the
content of these databases, it is probably small. Proteins 1tim and
1ede are two major exceptions. In the case of 1tim, PSI-BLAST
identifies only triose phosphate isomerases as similar to the
native sequence of 1tim, whereas a large collection of proteins

with the tim ���-barrel fold are included in the FSSP multiple
sequence alignment. Similarly, PSI-BLAST finds dehalogenases
based on the sequence of 1ede, whereas the FSSP multiple
sequence alignment includes the larger family of hydrolases, all
sharing the same fold, but with little sequence similarities.
Clearly, Sseq cannot capture the true diversity of the family in
these two cases. We do find a striking correlation, both quali-
tative and quantitative, between the entropy derived from our
designed sequences (Sdes) and the entropy derived from naturally
occurring sequences known to share the same fold (Sstr; see Fig.
4). This correlation is observed over a wide range of entropy and
protein sizes.

The definitions of the entropy measures Sseq, Sdes, and Sstr

make them extensive variables that implicitly depend on the
protein length. The trivial effect of the latter can be removed by
considering the average entropy per residue, S�N, where N is the
length, which can be converted to the average number Naa of

Fig. 4. The sequence entropy [Sseq (*)] and the design entropy [Sdes (E)] are
plotted against the entropy derived from structural information (Sstr) for a
data set of 11 proteins. The line represents the first diagonal, i.e., the line
where the different entropy measures would be identical. The correlation
coefficient between Sseq and Sstr is 0.92, whereas the correlation coefficient
between Sdes and Sstr is 0.99.

Fig. 5. The mean numbers of amino acid types compatible with any position
in the structure of the protein of interest derived from random sequences with
fixed amino acid composition [Naa

rand (*)], from sequences designed to stabilize
the fold of the protein [Naa

des (E)], and from sequences identified as similar to
the native sequence of the protein by PSI-BLAST [Naa

seq (	)] are compared with
Naa

str, derived from sequences of proteins identified as structurally similar to the
protein of interest by FSSP. The line represents the first diagonal, i.e., the line
where the different measures would be identical.
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amino acid types compatible with each position in the protein,
according to

Naa � exp��S
N�. [8]

The three measures, Naa
des, Naa

seq, and Naa
str, are compared in Fig. 5.

We confirm that the sequence diversity per residue measured
from our design sequence shows the best qualitative and quan-
titative agreement with the sequence diversity derived from
structural information. This sequence diversity is derived from
the knowledge of the three-dimensional conformation of the
backbone of the protein (its topology or fold) and the stability
of the designed sequences for that fold (defined by minimizing
the free energy of the model proteins generated in the SSA
procedure; see Methods).

Our sequence design strategy also relies on keeping the amino
acid composition fixed. Fig. 5 shows that this constraint effec-
tively reduces the size of the sequence space sampled in the
design procedure, but that this space remains large compared
with the sequence space found at the end of the optimization
procedure. Proteins within a folding class (such as �, �, �	�, and
���) have very similar amino acid compositions. The latter can
in fact be used to predict the folding class of a protein with
remarkable accuracy (see ref. 32 for review). Because the
structure of the backbone of the protein is an input to our
sequence design procedure, the folding class is known, and
maintaining the amino acid composition constant to its value
defined by the native sequence of the protein seems appropriate.

Both Figs. 4 and 5 suggest that, independent of functional
fitness, it is the topology of a protein, its length, and its stability
that define the size of the sequence space that is compatible with
its structure.

Conclusions
It is well known that certain protein structures (folds) are more
common than others (1, 33). To explain this phenomenon,
several models consider the concept of protein structure des-
ignability; that is, the number of sequences possessing the
structure of interest as their nondegenerate energy ground state.
Highly designable structures are more likely to have been found
through the process of evolution, because they are more robust
to random mutations. Based on lattice models with a reduced
amino acid alphabet (usually a two-letter code), it was found that
highly designable structures are thermodynamically more stable
that other structures and contain ‘‘protein-like’’ secondary struc-
tures and tertiary structures (34–36). It was noticed recently,
however, that these results depend on the details of the model;
for example, lattice structures that were highly designable for the
two-letter amino acid alphabet are not especially designable with
a higher-letter alphabet (37). The study described in this article
is concerned with detailed all-atom representations of proteins;
it measures stability based on a physical potential and includes
all 20 types of amino acids. We design sequences for proteins
based on both their topology (i.e., the three-dimensional geom-
etry of the backbone) and their stability. The diversity of the
sequences designed for a given protein structure is found to
correlate well with the diversity of the sequences of naturally
occurring proteins that adopt this structure. Our results also
suggest that the designability of a protein can be derived from the
knowledge of its topology alone. As a consequence, we antici-
pate that our method for sequence space exploration will prove
useful for identifying highly designable folds, which will repre-
sent attractive targets for protein design.
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