Abstract
Faecal bile acids have long been associated with colon cancer; highly hydrophobic bile acids, which induce apoptosis, have been implicated in the promotion of colon tumours. The moderately hydrophobic chemopreventive agent ursodeoxycholic acid (UDCA) does not induce apoptosis; rather, it causes colon-derived tumour cells to arrest their growth. To investigate the relationship between bile acid hydrophobicity and biological activity we examined 26 bile acids for their capacity to induce apoptosis or alter cell growth. We found that the rapidity with which, and the degree to which, bile acids could induce apoptosis or growth arrest was correlated with their relative hydrophobicities. Of the bile acids tested, only deoxycholic acid (DCA) and chenodeoxycholic acid, the most hydrophobic bile acids tested, could induce apoptosis in less than 12 h in the human colon cancer cell line HCT116. The moderately hydrophobic bile acids hyoDCA, lagoDCA, norDCA, homoUDCA and isoUDCA induced growth arrest at 12 h but longer incubations resulted in apoptosis. Conjugation of glycine or taurine to the bile acids decreased relative hydrophobicity and eliminated biological activity in our assays. In addition, we tested a subset of these bile acids for their ability to translocate across cell membranes. When (14)C-labelled and (3)H-labelled DCA, UDCA and lagoDCA were added to cell cultures, we found only minimal uptake by colon cells, whereas hepatocytes had considerably higher absorption. These experiments suggest that hydrophobicity is an important determinant of the biological activity exhibited by bile acids but that under our conditions these activities are not correlated with cellular uptake.
Full Text
The Full Text of this article is available as a PDF (121.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aldini R., Roda A., Montagnani M., Roda E. Bile acid structure and intestinal absorption in the animal model. Ital J Gastroenterol. 1995 Apr;27(3):141–144. [PubMed] [Google Scholar]
- Aries V., Crowther J. S., Drasar B. S., Hill M. J. Degradation of bile salts by human intestinal bacteria. Gut. 1969 Jul;10(7):575–576. doi: 10.1136/gut.10.7.575. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Benz C., Angermüller S., Otto G., Sauer P., Stremmel W., Stiehl A. Effect of tauroursodeoxycholic acid on bile acid-induced apoptosis in primary human hepatocytes. Eur J Clin Invest. 2000 Mar;30(3):203–209. doi: 10.1046/j.1365-2362.2000.00615.x. [DOI] [PubMed] [Google Scholar]
- Coleman R., Iqbal S., Godfrey P. P., Billington D. Membranes and bile formation. Composition of several mammalian biles and their membrane-damaging properties. Biochem J. 1979 Jan 15;178(1):201–208. doi: 10.1042/bj1780201. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Faubion W. A., Guicciardi M. E., Miyoshi H., Bronk S. F., Roberts P. J., Svingen P. A., Kaufmann S. H., Gores G. J. Toxic bile salts induce rodent hepatocyte apoptosis via direct activation of Fas. J Clin Invest. 1999 Jan;103(1):137–145. doi: 10.1172/JCI4765. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hamada K., Umemoto A., Kajikawa A., Seraj M. J., Monden Y. In vitro formation of DNA adducts with bile acids. Carcinogenesis. 1994 Sep;15(9):1911–1915. doi: 10.1093/carcin/15.9.1911. [DOI] [PubMed] [Google Scholar]
- Hillaire S., Ballet F., Franco D., Setchell K. D., Poupon R. Effects of ursodeoxycholic acid and chenodeoxycholic acid on human hepatocytes in primary culture. Hepatology. 1995 Jul;22(1):82–87. [PubMed] [Google Scholar]
- Hori T., Matsumoto K., Sakaitani Y., Sato M., Morotomi M. Effect of dietary deoxycholic acid and cholesterol on fecal steroid concentration and its impact on the colonic crypt cell proliferation in azoxymethane-treated rats. Cancer Lett. 1998 Feb 13;124(1):79–84. doi: 10.1016/s0304-3835(97)00452-7. [DOI] [PubMed] [Google Scholar]
- Ikegami T., Matsuzaki Y., Shoda J., Kano M., Hirabayashi N., Tanaka N. The chemopreventive role of ursodeoxycholic acid in azoxymethane-treated rats: suppressive effects on enhanced group II phospholipase A2 expression in colonic tissue. Cancer Lett. 1998 Dec 25;134(2):129–139. doi: 10.1016/s0304-3835(98)00248-1. [DOI] [PubMed] [Google Scholar]
- Lepri L., Heimler D., Desideri P. G. Reversed-phase high-performance thin-layer chromatography of free and conjugated bile acids. J Chromatogr. 1984 Apr 24;288(2):461–468. doi: 10.1016/s0021-9673(01)93723-9. [DOI] [PubMed] [Google Scholar]
- Makishima M., Okamoto A. Y., Repa J. J., Tu H., Learned R. M., Luk A., Hull M. V., Lustig K. D., Mangelsdorf D. J., Shan B. Identification of a nuclear receptor for bile acids. Science. 1999 May 21;284(5418):1362–1365. doi: 10.1126/science.284.5418.1362. [DOI] [PubMed] [Google Scholar]
- Martinez J. D., Stratagoules E. D., LaRue J. M., Powell A. A., Gause P. R., Craven M. T., Payne C. M., Powell M. B., Gerner E. W., Earnest D. L. Different bile acids exhibit distinct biological effects: the tumor promoter deoxycholic acid induces apoptosis and the chemopreventive agent ursodeoxycholic acid inhibits cell proliferation. Nutr Cancer. 1998;31(2):111–118. doi: 10.1080/01635589809514689. [DOI] [PubMed] [Google Scholar]
- Parks D. J., Blanchard S. G., Bledsoe R. K., Chandra G., Consler T. G., Kliewer S. A., Stimmel J. B., Willson T. M., Zavacki A. M., Moore D. D. Bile acids: natural ligands for an orphan nuclear receptor. Science. 1999 May 21;284(5418):1365–1368. doi: 10.1126/science.284.5418.1365. [DOI] [PubMed] [Google Scholar]
- Qiao D., Chen W., Stratagoules E. D., Martinez J. D. Bile acid-induced activation of activator protein-1 requires both extracellular signal-regulated kinase and protein kinase C signaling. J Biol Chem. 2000 May 19;275(20):15090–15098. doi: 10.1074/jbc.M908890199. [DOI] [PubMed] [Google Scholar]
- Rao Y. P., Stravitz R. T., Vlahcevic Z. R., Gurley E. C., Sando J. J., Hylemon P. B. Activation of protein kinase C alpha and delta by bile acids: correlation with bile acid structure and diacylglycerol formation. J Lipid Res. 1997 Dec;38(12):2446–2454. [PubMed] [Google Scholar]
- Reddy B. S. Dietary fat and colon cancer: animal model studies. Lipids. 1992 Oct;27(10):807–813. doi: 10.1007/BF02535855. [DOI] [PubMed] [Google Scholar]
- Reddy B. S. Role of bile metabolites in colon carcinogenesis. Animal models. Cancer. 1975 Dec;36(6 Suppl):2401–2406. doi: 10.1002/1097-0142(197512)36:6<2401::aid-cncr2820360619>3.0.co;2-o. [DOI] [PubMed] [Google Scholar]
- Reddy B. S., Watanabe K., Weisburger J. H., Wynder E. L. Promoting effect of bile acids in colon carcinogenesis in germ-free and conventional F344 rats. Cancer Res. 1977 Sep;37(9):3238–3242. [PubMed] [Google Scholar]
- Roda A., Minutello A., Angellotti M. A., Fini A. Bile acid structure-activity relationship: evaluation of bile acid lipophilicity using 1-octanol/water partition coefficient and reverse phase HPLC. J Lipid Res. 1990 Aug;31(8):1433–1443. [PubMed] [Google Scholar]
- Sagawa H., Tazuma S., Kajiyama G. Protection against hydrophobic bile salt-induced cell membrane damage by liposomes and hydrophilic bile salts. Am J Physiol. 1993 May;264(5 Pt 1):G835–G839. doi: 10.1152/ajpgi.1993.264.5.G835. [DOI] [PubMed] [Google Scholar]
- Schlottman K., Wachs F. P., Krieg R. C., Kullmann F., Schölmerich J., Rogler G. Characterization of bile salt-induced apoptosis in colon cancer cell lines. Cancer Res. 2000 Aug 1;60(15):4270–4276. [PubMed] [Google Scholar]
- Sodeman T., Bronk S. F., Roberts P. J., Miyoshi H., Gores G. J. Bile salts mediate hepatocyte apoptosis by increasing cell surface trafficking of Fas. Am J Physiol Gastrointest Liver Physiol. 2000 Jun;278(6):G992–G999. doi: 10.1152/ajpgi.2000.278.6.G992. [DOI] [PubMed] [Google Scholar]
- Vyvoda O. S., Coleman R., Holdsworth G. Effects of different bile salts upon the composition and morphology of a liver plasma membrane preparation. Deoxycholate is more membrane damaging than cholate and its conjugates. Biochim Biophys Acta. 1977 Feb 14;465(1):68–76. doi: 10.1016/0005-2736(77)90356-x. [DOI] [PubMed] [Google Scholar]