Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2001 Jul 1;357(Pt 1):217–223. doi: 10.1042/0264-6021:3570217

Structure-function analysis of purified Enterococcus hirae CopB copper ATPase: effect of Menkes/Wilson disease mutation homologues.

K D Bissig 1, H Wunderli-Ye 1, P W Duda 1, M Solioz 1
PMCID: PMC1221944  PMID: 11415452

Abstract

The Enterococcus hirae CopB ATPase (EC 3.6.1.3) confers copper resistance to the organism by expelling excess copper. Two related human ATPase genes, ATP7A (EC 3.6.1.36) and ATP7B (EC 3.6.1.36), have been cloned as the loci of mutations causing Menkes and Wilson diseases, diseases of copper metabolism. Many mutations in these genes have been identified in patients. Since it has not yet been possible to purify the human copper ATPases, it has proved difficult to test the impact of mutations on ATPase function. Some mutations occur in highly conserved sequence motifs, suggesting that their effect on function can be tested with a homologous enzyme. Here, we used the E. hirae CopB ATPase to investigate the impact of such mutations on enzyme function in vivo and in vitro. The Menkes disease mutation of Cys-1000-->Arg, changing the conserved Cys-Pro-Cys ('CPC') motif, was mimicked in CopB. The corresponding Cys-396-->Ser CopB ATPase was unable to restore copper resistance in a CopB knock-out mutant in vivo. The purified mutant ATPase still formed an acylphosphate intermediate, but possessed no detectable ATP hydrolytic activity. The most frequent Wilson disease mutation, His-1069-->Gln, was introduced into CopB as His-480-->Gln (H480Q). This mutant CopB also failed to confer copper resistance to a CopB knock-out strain. Purified H480Q CopB formed an acylphosphate intermediate and retained a small, but significant, ATPase activity. Our results reveal that Cys-396 and His-480 of CopB are key residues for ATPase function, and similar roles are suggested for Cys-1000 and His-1069 of Menkes and Wilson ATPases respectively.

Full Text

The Full Text of this article is available as a PDF (226.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  2. Camakaris J., Voskoboinik I., Mercer J. F. Molecular mechanisms of copper homeostasis. Biochem Biophys Res Commun. 1999 Aug 2;261(2):225–232. doi: 10.1006/bbrc.1999.1073. [DOI] [PubMed] [Google Scholar]
  3. Dame J. B., Scarborough G. A. Identification of the hydrolytic moiety of the Neurospora plasma membrane H+-ATPase and demonstration of a phosphoryl-enzyme intermediate in its catalytic mechanism. Biochemistry. 1980 Jun 24;19(13):2931–2937. doi: 10.1021/bi00554a018. [DOI] [PubMed] [Google Scholar]
  4. Forbes J. R., Cox D. W. Functional characterization of missense mutations in ATP7B: Wilson disease mutation or normal variant? Am J Hum Genet. 1998 Dec;63(6):1663–1674. doi: 10.1086/302163. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Gupta A., Matsui K., Lo J. F., Silver S. Molecular basis for resistance to silver cations in Salmonella. Nat Med. 1999 Feb;5(2):183–188. doi: 10.1038/5545. [DOI] [PubMed] [Google Scholar]
  6. Hung I. H., Suzuki M., Yamaguchi Y., Yuan D. S., Klausner R. D., Gitlin J. D. Biochemical characterization of the Wilson disease protein and functional expression in the yeast Saccharomyces cerevisiae. J Biol Chem. 1997 Aug 22;272(34):21461–21466. doi: 10.1074/jbc.272.34.21461. [DOI] [PubMed] [Google Scholar]
  7. Iida M., Terada K., Sambongi Y., Wakabayashi T., Miura N., Koyama K., Futai M., Sugiyama T. Analysis of functional domains of Wilson disease protein (ATP7B) in Saccharomyces cerevisiae. FEBS Lett. 1998 May 29;428(3):281–285. doi: 10.1016/s0014-5793(98)00546-8. [DOI] [PubMed] [Google Scholar]
  8. Laemmli U. K., Favre M. Maturation of the head of bacteriophage T4. I. DNA packaging events. J Mol Biol. 1973 Nov 15;80(4):575–599. doi: 10.1016/0022-2836(73)90198-8. [DOI] [PubMed] [Google Scholar]
  9. Lanzetta P. A., Alvarez L. J., Reinach P. S., Candia O. A. An improved assay for nanomole amounts of inorganic phosphate. Anal Biochem. 1979 Nov 15;100(1):95–97. doi: 10.1016/0003-2697(79)90115-5. [DOI] [PubMed] [Google Scholar]
  10. Lutsenko S., Kaplan J. H. Organization of P-type ATPases: significance of structural diversity. Biochemistry. 1995 Dec 5;34(48):15607–15613. doi: 10.1021/bi00048a001. [DOI] [PubMed] [Google Scholar]
  11. Nagano K., Nakamura K., Urakami K. I., Umeyama K., Uchiyama H., Koiwai K., Hattori S., Yamamoto T., Matsuda I., Endo F. Intracellular distribution of the Wilson's disease gene product (ATPase7B) after in vitro and in vivo exogenous expression in hepatocytes from the LEC rat, an animal model of Wilson's disease. Hepatology. 1998 Mar;27(3):799–807. doi: 10.1002/hep.510270323. [DOI] [PubMed] [Google Scholar]
  12. Odermatt A., Suter H., Krapf R., Solioz M. Primary structure of two P-type ATPases involved in copper homeostasis in Enterococcus hirae. J Biol Chem. 1993 Jun 15;268(17):12775–12779. [PubMed] [Google Scholar]
  13. Okkeri J., Haltia T. Expression and mutagenesis of ZntA, a zinc-transporting P-type ATPase from Escherichia coli. Biochemistry. 1999 Oct 19;38(42):14109–14116. doi: 10.1021/bi9913956. [DOI] [PubMed] [Google Scholar]
  14. Pakula A. A., Sauer R. T. Genetic analysis of protein stability and function. Annu Rev Genet. 1989;23:289–310. doi: 10.1146/annurev.ge.23.120189.001445. [DOI] [PubMed] [Google Scholar]
  15. Payne A. S., Kelly E. J., Gitlin J. D. Functional expression of the Wilson disease protein reveals mislocalization and impaired copper-dependent trafficking of the common H1069Q mutation. Proc Natl Acad Sci U S A. 1998 Sep 1;95(18):10854–10859. doi: 10.1073/pnas.95.18.10854. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Petris M. J., Mercer J. F., Culvenor J. G., Lockhart P., Gleeson P. A., Camakaris J. Ligand-regulated transport of the Menkes copper P-type ATPase efflux pump from the Golgi apparatus to the plasma membrane: a novel mechanism of regulated trafficking. EMBO J. 1996 Nov 15;15(22):6084–6095. [PMC free article] [PubMed] [Google Scholar]
  17. Peña M. M., Lee J., Thiele D. J. A delicate balance: homeostatic control of copper uptake and distribution. J Nutr. 1999 Jul;129(7):1251–1260. doi: 10.1093/jn/129.7.1251. [DOI] [PubMed] [Google Scholar]
  18. Rensing C., Mitra B., Rosen B. P. The zntA gene of Escherichia coli encodes a Zn(II)-translocating P-type ATPase. Proc Natl Acad Sci U S A. 1997 Dec 23;94(26):14326–14331. doi: 10.1073/pnas.94.26.14326. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Schaefer M., Gitlin J. D. Genetic disorders of membrane transport. IV. Wilson's disease and Menkes disease. Am J Physiol. 1999 Feb;276(2 Pt 1):G311–G314. doi: 10.1152/ajpgi.1999.276.2.G311. [DOI] [PubMed] [Google Scholar]
  20. Shah A. B., Chernov I., Zhang H. T., Ross B. M., Das K., Lutsenko S., Parano E., Pavone L., Evgrafov O., Ivanova-Smolenskaya I. A. Identification and analysis of mutations in the Wilson disease gene (ATP7B): population frequencies, genotype-phenotype correlation, and functional analyses. Am J Hum Genet. 1997 Aug;61(2):317–328. doi: 10.1086/514864. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Sharma R., Rensing C., Rosen B. P., Mitra B. The ATP hydrolytic activity of purified ZntA, a Pb(II)/Cd(II)/Zn(II)-translocating ATPase from Escherichia coli. J Biol Chem. 2000 Feb 11;275(6):3873–3878. doi: 10.1074/jbc.275.6.3873. [DOI] [PubMed] [Google Scholar]
  22. Silver S., Phung L. T. Bacterial heavy metal resistance: new surprises. Annu Rev Microbiol. 1996;50:753–789. doi: 10.1146/annurev.micro.50.1.753. [DOI] [PubMed] [Google Scholar]
  23. Solioz M., Odermatt A. Copper and silver transport by CopB-ATPase in membrane vesicles of Enterococcus hirae. J Biol Chem. 1995 Apr 21;270(16):9217–9221. doi: 10.1074/jbc.270.16.9217. [DOI] [PubMed] [Google Scholar]
  24. Solioz M., Vulpe C. CPx-type ATPases: a class of P-type ATPases that pump heavy metals. Trends Biochem Sci. 1996 Jul;21(7):237–241. [PubMed] [Google Scholar]
  25. Solioz M., Waser M. Efficient electrotransformation of Enterococcus hirae with a new Enterococcus-Escherichia coli shuttle vector. Biochimie. 1990 Apr;72(4):279–283. doi: 10.1016/0300-9084(90)90084-t. [DOI] [PubMed] [Google Scholar]
  26. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Toyoshima C., Nakasako M., Nomura H., Ogawa H. Crystal structure of the calcium pump of sarcoplasmic reticulum at 2.6 A resolution. Nature. 2000 Jun 8;405(6787):647–655. doi: 10.1038/35015017. [DOI] [PubMed] [Google Scholar]
  28. Tümer Z., Møller L. B., Horn N. Mutation spectrum of ATP7A, the gene defective in Menkes disease. Adv Exp Med Biol. 1999;448:83–95. doi: 10.1007/978-1-4615-4859-1_7. [DOI] [PubMed] [Google Scholar]
  29. Vilsen B., Andersen J. P., Clarke D. M., MacLennan D. H. Functional consequences of proline mutations in the cytoplasmic and transmembrane sectors of the Ca2(+)-ATPase of sarcoplasmic reticulum. J Biol Chem. 1989 Dec 15;264(35):21024–21030. [PubMed] [Google Scholar]
  30. Vulpe C. D., Packman S. Cellular copper transport. Annu Rev Nutr. 1995;15:293–322. doi: 10.1146/annurev.nu.15.070195.001453. [DOI] [PubMed] [Google Scholar]
  31. Waggoner D. J., Bartnikas T. B., Gitlin J. D. The role of copper in neurodegenerative disease. Neurobiol Dis. 1999 Aug;6(4):221–230. doi: 10.1006/nbdi.1999.0250. [DOI] [PubMed] [Google Scholar]
  32. Wunderli-Ye H., Solioz M. Effects of promoter mutations on the in vivo regulation of the cop operon of Enterococcus hirae by copper(I) and copper(II). Biochem Biophys Res Commun. 1999 Jun 7;259(2):443–449. doi: 10.1006/bbrc.1999.0807. [DOI] [PubMed] [Google Scholar]
  33. Wyler-Duda P., Solioz M. Phosphoenzyme formation by purified, reconstituted copper ATPase of Enterococcus hirae. FEBS Lett. 1996 Dec 9;399(1-2):143–146. doi: 10.1016/s0014-5793(96)01306-3. [DOI] [PubMed] [Google Scholar]
  34. Yoshimizu T., Omote H., Wakabayashi T., Sambongi Y., Futai M. Essential Cys-Pro-Cys motif of Caenorhabditis elegans copper transport ATPase. Biosci Biotechnol Biochem. 1998 Jun;62(6):1258–1260. doi: 10.1271/bbb.62.1258. [DOI] [PubMed] [Google Scholar]
  35. Yuan D. S., Dancis A., Klausner R. D. Restriction of copper export in Saccharomyces cerevisiae to a late Golgi or post-Golgi compartment in the secretory pathway. J Biol Chem. 1997 Oct 10;272(41):25787–25793. doi: 10.1074/jbc.272.41.25787. [DOI] [PubMed] [Google Scholar]
  36. Yuan D. S., Stearman R., Dancis A., Dunn T., Beeler T., Klausner R. D. The Menkes/Wilson disease gene homologue in yeast provides copper to a ceruloplasmin-like oxidase required for iron uptake. Proc Natl Acad Sci U S A. 1995 Mar 28;92(7):2632–2636. doi: 10.1073/pnas.92.7.2632. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES