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Genetic mutations that lead to undetectable or minimal changes in
phenotypes are said to reveal redundant functions. Redundancy is
common among phenotypes of higher organisms that experience
low mutation rates and small population sizes. Redundancy is less
common among organisms with high mutation rates and large
populations, or among the rapidly dividing cells of multicellular
organisms. In these cases, one even observes the opposite ten-
dency: a hypersensitivity to mutation, which we refer to as antire-
dundancy. In this paper we analyze the evolutionary dynamics of
redundancy and antiredundancy. Assuming a cost of redundancy,
we find that large populations will evolve antiredundant mecha-
nisms for removing mutants and thereby bolster the robustness of
wild-type genomes; whereas small populations will evolve redun-
dancy to ensure that all individuals have a high chance of survival.
We propose that antiredundancy is as important for developmen-
tal robustness as redundancy, and is an essential mechanism for
ensuring tissue-level stability in complex multicellular organisms.
We suggest that antiredundancy deserves greater attention in
relation to cancer, mitochondrial disease, and virus infection.

genomic stability � mutation selection � canalization � fitness
landscape � quasispecies

The mutational instability of a genome undergoing replication
is both a source of evolutionary novelty and a cause of

damage. The impact of deleterious mutations can be reduced
when several genes contribute toward a single function, or when
there are several copies of a single gene (1). In both cases the
consequence is genetic redundancy, also called genetic canali-
zation (2). Redundancy has been found among homeotic genes
(3), transcription factors (4), signal transduction proteins (5),
metabolic pathway genes (6), and among the variable genes
encoding antibody peptides (7). It is thought that redundancy
promotes robustness by ‘‘backing-up’’ important functions. Re-
dundancy can be preserved indefinitely only if there is some
asymmetry in the contribution of genes to their shared function
(8)—those genes making the larger contribution must experi-
ence higher rates of deleterious mutation than those making
smaller contributions. Without an asymmetry, the genes with the
higher mutation rates are lost by random drift.

Redundancy is rare in many organisms. In viruses and bac-
teria, for example, the need for genome compression leads to
small genomes with no or few duplicate genes, a small number
of controlling elements, and overlapping reading frames. As a
result, a single mutation will often damage several distinct
functions simultaneously (9). Within multicellular eukaryotes,
checkpoint genes such as p53 respond to somatic mutations by
inducing apoptosis and removing damaged cells from a tissue
(10). Similarly, the decline in telomerase enzyme during the
development of a cell lineage ensures that cells do not propagate
mutations indefinitely (11). The loss of some error repair in
mitochondria increases the rate of mildly deleterious mutation
accumulation (12). In each of these cases, we observe the
emergence of apparent antiredundancy—that is, mechanisms
that sensitize cells or individuals to genetic damage and thereby
eliminate them preemptively from a population.

We used a mathematical model to examine which general
conditions favor the evolution of redundancy and which favor
antiredundancy. We first derived the impact of fixed levels of
redundancy on the mean fitness of a population in mutation-
selection balance. Afterward, we allowed individual-level evo-
lutionary variation in the level of redundancy. We do not
describe explicitly how redundancy will have arisen or is encoded
(13), nor do we estimate the time over which redundancy is
expected to be preserved (14). Instead, we investigated the
impact of genomic redundancy on mean fitness as a function of
the effective population size, the mutation rate, and the size of
the genome.

A Quasispecies Model
We consider an extended form of the quasispecies equation,
which was originally introduced to describe selection and mu-
tation among macromolecules (15). This equation provides a
very general framework for exploring mutation and selection in
a heterogenous population (16). We use this framework to
describe the evolution of L-bit genomes on a fitness landscape.
Instead of tracking the abundance of each individual genotype,
we tracked the abundance of each ‘‘hamming class’’—defined as
those genomes harboring an identical number of mutations from
a central wild-type sequence. We assumed that fitness depends
only on the hamming distance of a mutant from the wild-type
sequence. Thus, the fitness landscape is symmetric around the
wild type; mutations to any part of the genome are equally
deleterious. If we let zk denote the total concentration of
genotypes with k deleterious mutations, we can express the time
evolution of the k-error mutants as a differential equation:

żk � �
i � 0

L

zi fiPki. [1]

The value fi denotes the fitness of a genome with i mutations, and
Pki is the probability of mutation from an i-error genotype to a
k-error genotype during replication (see Appendix). L denotes
genome length.

We consider multiplicative fitness landscapes of the form fi �
(1 � s)i. The wild-type sequence, i � 0, is maximally fit, and each
deleterious mutation reduces fitness by an amount (1 � s),
independent of the other loci. The parameter s measures the
deleteriousness of each mutation; this selective value is usually
very small. By varying the magnitude of s we vary the steepness
of the landscape and hence the effective degree of redundancy
in the genome (Fig. 1).

To compare different mean fitness values for different levels
of redundancy (s), we normalize so that the sum of all fitness
classes is unity:
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fi �
�1 � s�i

�j � 0
L �1 � s�j . [2]

This normalization ensures that genotypes cannot evolve toward
both maximum fitness and maximum redundancy simulta-
neously. The normalization enforces a tradeoff between the
absolute height of the landscape and its steepness. The existence
of such a tradeoff follows from molecular considerations. Mo-
lecular mechanisms of redundancy impose fitness costs on the
wild type, through increased genome size, increased metabolism,
or reduced binding specificity. Although the precise form of the
tradeoff curve is arbitrary and relatively unimportant (other
normalizations yield similar results), it is essential that we impose
some tradeoff between maximum fitness and redundancy.

Unlike most treatments of the quasispecies equation, we must
here allow for back mutations. According to two famous prin-
ciples of population genetics, the neglect of back mutations
introduces pathologies into the equilibrium state of both infinite
and finite populations. If back mutations are neglected then,
according the Haldane–Muller principle, the mean equilibrium
fitness of an infinite haploid population is independent of the
landscape’s steepness (19). If back mutations are ignored in
small populations, on the other hand, Muller’s ratchet implies
that mean fitness will tend always toward a minimum, regardless
of the landscape steepness. (The landscape steepness can affect
the speed, but not the eventual outcome, of Muller’s ratchet.) To
detect adaptive benefits or costs of redundancy, therefore, we
cannot ignore back mutations.

We are assuming a form of redundancy produced by a genetic
network property with, on average, an equal contribution from
each gene (20, 21). We do not model the explicit mechanism of
redundancy (see Table 1) but rather explore the generic conse-
quences of redundancy on mean fitness. In the Appendix, we
derive the average number of mutations, k� , for a genotype in
mutation-selection equilibrium. This yields the following ap-
proximation for mean population fitness:

f� �
s�1 � s�k�

1 � �s � 1��1 � s�L . [3]

For small population sizes, the deterministic quasispecies
equation does not apply. In this case, however, moment equa-
tions (22) can be used to express the mean fitness as a function

of the effective population size N (see Appendix). These equa-
tions determine the relationship between mean population
fitness, the strength of selection, the rate of mutation, the
genome length, and the size of the population. Recent studies
(18) have emphasized the role of mutation in selecting for flatter
landscapes; we emphasize the role of population size.

The Influence of Population Size
Fig. 2 shows the relationship between level of redundancy and
expected mean fitness for several different population sizes.
Both in theory (Fig. 2a) and in individual-based stochastic
simulations (Fig. 2b) we see that redundancy increases the mean
fitness in small populations, whereas it decreases fitness in large
populations. This central result has an intuitive explanation. In
small populations, mutational drift contributes disproportion-
ately to the population fitness. There is a large temporal variance
in the mean hamming class, and redundancy can effectively mask
these mutations. Small populations are thus better served by
shallow landscapes—i.e., by slightly decreasing the fitness of the
wild type, but increasing the fitness of its nearby neighbors.
Large populations, however, are not at risk of being ‘‘swept off’’
the fitness peak by the stochastic f luctuations that aff lict small
populations; the temporal variance in the mean hamming class

Fig. 1. A schematic diagram of fitness landscapes with different degrees of
redundancy. The x–y plane denotes the space of genotypes and the x axis
denotes the corresponding fitness. High values of landscape steepness, s,
correspond to antiredundant genomes (Lower Right) for which single muta-
tions lead to considerable reductions in fitness. Smaller values of s correspond
to shallower landscapes (Upper Left) and increasing degrees of redundancy.
All landscapes are normalized to have the same total volume (Eq. 2); shallower
landscapes have shorter wild-type peaks.

Fig. 2. (a) The theoretical relationship between redundancy and equilibrium
mean fitness for populations of various sizes (N � 10, 100, 500, 1,000, 10,000,
and N infinite). Small populations benefit from redundant (i.e., flatter) land-
scapes, but large populations prefer antiredundant (i.e., steeper) landscapes.
The curves in the figure, given by Eqs. 3, 6, and 7, correspond to genome length
L � 104 and mutation rate u � 5 � 10�5. (b) The relationship between redun-
dancy and equilibrium mean fitness as observed from individual-based com-
puter simulations of the quasispecies equation (L � 1,000, u � 5 � 10�4). Each
individual is characterized by its hamming distance from wild type. The mean
population fitness is computed by averaging the last 20% of 10,000 genera-
tions with selection and mutation. In each discrete generation, N parents are
chosen probabilistically from the previous generation according to their
relative fitnesses. The offspring of a parent is mutated according to Eq. 5. The
numerical studies confirm the theoretical prediction: small populations prefer
shallow landscapes, whereas large populations prefer steep landscapes.
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is small. It is better, therefore, for large populations to amplify
the phenotypic penetrance of deleterious genes by means of
sharp landscapes.

Our results on equilibrium mean population fitness (Fig. 2)
constitute a population-based argument for the evolution of
redundancy in small populations and antiredundancy in large
populations. These results do not, in themselves, demonstrate
that such strategies are evolutionarily stable or achievable. In
other words, we must yet demonstrate that individual replicators
subject to individual-level selection evolve degrees of redun-
dancy consistent with the optimal population mean fitness. If we
allow individuals to modify the heritable steepness of their own
individual landscapes through mutation, however, we find that
small populations do, indeed, evolve toward redundancy, and
large populations evolve toward antiredundancy by means of
individual-level selection (Fig. 3). For both population sizes, the
evolution toward the preferred level of redundancy is punctuated
or episodic.

The evolutionary stability of these two strategies—sensitivity
in large populations and redundancy in small populations—has
an intuitive explanation. The stability rests on the fact that flatter
landscapes have lower fitness peaks. A large population on a
steep landscape is highly localized near the wild type (low k�).
Mutants with different s-values are thus most often generated
near the wild type—precisely where a more shallow landscape
would be disadvantageous to them. Conversely, small popula-
tions with shallow landscapes are delocalized (high k�). In this
case, landscape mutants tend to arise far from the wild type—
precisely where a steeper landscape would decrease their fitness.
Thus, the landscape itself acts as a mechanism for ensuring the
robustness of the incumbent strategy, in each population size.

Redundant and Antiredundant Mechanisms in Biology
We have shown how population size influences the degree of
redundancy expressed by a genome. In large populations of
viruses and bacteria, and in large populations of rapidly dividing
cells within multicellular organisms, we expect an evolution
toward antiredundant mechanisms. For small populations, on

the other hand, we expect a tendency toward redundancy. Table
1 lists a variety of molecular mechanisms capable of producing
redundancy and antiredundancy. Our quasispecies model pro-
vides a statistical treatment of the parameter s that is the
developmental end-point of each of these particular mecha-
nisms. The mechanisms in Table 1 all influence development and
somatic processes by modifying the effective degree of delete-
riousness, s, of mutations.

Antiredundant mechanisms (high s values) include overlap-
ping reading frames, absence of tRNA suppressor genes, codon
bias, loss of DNA error repair, reduced number of promoters,
coordinated expression of genes, and checkpoint genes. All of
these mechanisms remove mutant genomes from populations
(either of individuals or cells). Redundant mechanisms (low s
values) include duplicated genes, correlated gene functions,
tRNA suppressors, heat shock proteins, molecular quality con-
trol, and alternative metabolic pathways. These mechanisms,
which incur a cost (through increased genome size or greater
need for resources), mask the effects of mutation. When avail-
able, both redundant and antiredundant strategies can be ex-
ploited, even simultaneously, by a single organism. Strategies
may also vary according to cell types.

Redundancy and Levels of Selection
The dynamics of redundancy and antiredundancy reveal an
intriguing interplay between the ‘‘levels of selection.’’ In multi-
cellular organisms, rapidly dividing cells experience selection, in
effect, as members of a large quasispecies—much like viruses or
bacteria. Large multicellular organisms often experience rela-
tively small population sizes, though the cells of which they are
composed experience huge population sizes. Hence there is a
possible conflict between the organismal and cellular levels of
selection: the multicellular organism would benefit from a
redundant (flatter) fitness landscape, whereas the cells of which
the organism is composed would benefit from an antiredundant
(steeper) landscape. Interestingly, in some cases this conflict has
a synergistic resolution: antiredundancy at the cellular level is an
effective means of ensuring redundancy and robustness at the

Table 1. A summary of mechanisms responsible for creating redundancy and antiredundancy
at the cellular level

Redundancy Antiredundancy

Gene duplication (14) Overlapping reading frames (9)
Neutral codon usage (25) Nonconservative codon bias (26)
— Gene silencing (27)
Polyploidy (28) Haploidy
Multiple regulatory elements for n genes (29) Single regulatory element for n genes
Chaperone and heat shock proteins (30, 31) —
Checkpoint genes promoting repair (32) Checkpoint genes inducing apoptosis (33)
Telomerase induction (34) Loss of telomerase (35)
Dominance (36, 37) Incomplete dominance
Autophagy (38, 39) —
mRNA surveillance (40, 41) —
Bulk transmission (42, 43) Bottlenecks in transmission (44, 45)
Molecular quality control (46) —
tRNA suppressor molecules (47) —
Modularity (48) —
Multiple organelle copies (49) Single organelle copies
Parallel metabolic pathways (6, 50) Serial metabolic pathways
Correlated gene expression (29, 51) Uncorrelated gene expression
DNA error repair (52) Loss of error repair (53–55)

Redundant mechanisms mask the phenotypic effect of mutations, allowing the mutations to persist in
populations. We group together these mechanisms with a small s value. Antiredundant mechanisms increase the
efficiency of local selection to remove damaged components, and are associated with large s values. These diverse
biological processes illustrate a range of mechanisms through which evolution can modify the redundancy of
genotypes. Reference numbers are given in parentheses.
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organismal level. Antiredundant mechanisms activated in mu-
tant or damaged cells cause their removal, thereby ensuring
stability (redundancy) against mutation in tissues.

Both the large cellular population within an individual and the
smaller population of individuals themselves can increase their
mean fitness by adopting these apparently conflicting strategies.
There are four combinations of strategies available: (i) redun-
dancy at the cellular level promoting redundancy at the organ-

ismal level (for example, polyploidy); (ii) redundancy at the
cellular level promoting antiredundancy at the organismal level
(loss of molecular checkpoints); (iii) antiredundancy at the
cellular level promoting redundancy at the organismal level
(checkpoint genes inducing apoptosis); and (iv) antiredundancy
at the cellular level promoting antiredundancy at the organismal
level (bottlenecks in organelle transmission within and between
generations). The favored strategy depends on the local popu-
lation size experienced by cell and organism. Because our model
does not separate germ line from soma, we cannot directly
address a true evolutionary conflict of interest between cells and
organism. Mammalian cancer provides such an example. Mu-
tated cells strive to increase cellular redundancy to avoid the cost
of their mutations, thereby damaging the organism. The organ-
ism seeks to promote cellular antiredundancy so as to remove
mutant cells and increase organismal redundancy (case iii).
Antiredundancy at the cellular level should be viewed as a
victory for organismal selection.

Analogous to the cells of a complex organism, viruses, bac-
teria, and mitochondria often exhibit antiredundant mechanisms
as a consequence of their large populations and selection for
compressed genomes. Once again, antiredundant mechanisms at
the individual level can increase the mean fitness and stabilize
the quasispecies as a whole.

Redundancy and Cell Type
Finally, our theory predicts that, within a complex differentiated
organism, the level or redundancy expressed within each cell
type will depend on the effective reproducing population size the
cell type in question. For example, human brain cells seldom
regenerate and thus have an extremely small effective population
size. As a result, antiredundant mechanisms, such as apoptosis,
are strongly inhibited, whereas redundant mechanisms, includ-
ing the chaperones, are highly expressed (23). The same logic
implies that the amount of redundancy found within gene
families will depend on the effective population size of the
selective unit at which those genes operate. Housekeeping genes
code for processes important at the single cell level. Because
individual cells are present in large population sizes, functionally
redundant copies of housekeeping genes should be rare. Con-
versely, genes involved in immune-system regulation encode
functions operating at the organismal level, where population
sizes are often much lower. We would expect that these genes
have many backup copies (7). The predicted level of redundancy
requires that we identify the effective population size at which
genes come under strongest selection.

Appendix
Eigen’s quasispecies framework considers a large population of
L-bit genomes, xi, reproducing with imperfect fidelity according
to their fitnesses, wi, with fixed total concentration:

ẋi � �
j � 1

j � 2L

wjxjQij � xiW. [4]

In this equation, W(t) � �wjxj(t) denotes the mean population
fitness. The mutation matrix Qij is determined by the per-base
mutation rate, u, and the hamming distance H(i,j) between
genome i and j: Qij � uH(i,j)(1 � u)L�H(i,j).

When the fitness depends only on hamming class, the number
of equations is dramatically reduced (Eq. 1) by considering the
evolution of all k-error mutants together: zk � �H(i) � kxi. The
chance of mutation from class l to class k is given by

Fig. 3. The evolution of redundancy in a small population (Upper) and of
antiredundancy in a large population (Lower). We perform quasispecies sim-
ulations in which individuals are characterized both by their hamming class k
and their individual landscape steepness s. We choose genome size L � 500
and per-base mutation rate u � 0.001. On a slow time scale (probability 0.0005
per replication), an individual’s landscape is heritably mutated (uniformly
within [s � 0.005, s � 0.005]). For the small population, all individuals begin as
wild types with a fairly steep landscape, s � 0.05. For the large population, all
individuals begin as wild types with s � 0.025. After an initial transient, in both
cases the population’s mean landscape steepness s� evolves toward its pre-
ferred level. Simultaneously, the mean population fitness f� increases; al-
though it increases less dramatically for the small population. Throughout the
evolutionary time course, the within-population variance in redundancy (�2)
is small. In addition, over time the small population becomes delocalized (k�

increases), whereas the large population becomes increasingly localized (data
not shown).
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Pkl � �
m � �k � l�

min�l � k, 2L � l � k�� l
�l � k � m��2�� L � l

�m � l � k��2�
um�1 � u�L � m, [5]

where we include only terms for which k � m � l (mod 2). In this
formulation, the forward and backward mutation rates are equal.
All of our qualitative results (Figs. 2b and 3) remain unchanged,
however, even if forward mutations occur at twice the rate of
backward mutations.

We consider multiplicative fitness landscapes of the form fk �
(1 � s)k (Eq. 2). For s small, this multiplicative formulation is the
prototypical example of a nonepistatic landscape (16, 17), which
has the advantage of analytic tractability. All of our qualitative
results (Figs. 2b and 3) remain essentially unchanged, however,
if landscapes contain moderate synergistic or antagonistic ep-
istasis: fk � (1 � s)k�

, for 0.8 	 � 	 1.2.
The dominant eigenvector of ( flPkl) provides the equilibrium

relative abundances of the hamming classes. Moreover, the
corresponding dominant eigenvalue equals the equilibrium
mean fitness. As suggested in ref. 24, we look for an eigenvector
of the binomial form zk � (k

L)ak (1 � a)L�k, where a must yet be
determined. To compute a, we solve the discrete-time equivalent
of Eq. 4, which reduces to the same eigensystem problem (24).
Given the current abundances of hamming classes (z0, z1, . . . , zL),
consider the random variable V defined by the hamming class
after mutation of an individual chosen from the population
according to its relative fitness. The generating function of V,


V�x� � �
i � 0

�

prob�V � i�xi,

where x is a formal variable, is given by 
V(x) � �k zkfk � [u � (1 �
u)x]k � [(1 � u) � ux]L�k. In equilibrium we have 
V(x) � � �
zkxk, which, on the binomial substitution, determines the value of
a:

a �
1
2

�1 � u � 2u�s � ��1 � u � 2u�s�2 � 4u�s�. [6]

In equilibrium, the mean hamming distance from the wild type
is k� � aL.

According the moment equations of Woodcock and Higgs
(24), when u is small the following expression approximates the
equilibrium mean hamming class in a population of size N:

k� �N� �
L
2�1 �

2u
s

�
1

2sN

� ��1 �
2u
s

�
1

2sN�
2

�
4u
s

�
1

sN
� 2u� . [7]

Substitution into Eq. 3 yields the equilibrium mean fitness.
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