Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2001 Sep 1;358(Pt 2):287–294. doi: 10.1042/0264-6021:3580287

Crystal structure of the phosphatidylinositol 3,4-bisphosphate-binding pleckstrin homology (PH) domain of tandem PH-domain-containing protein 1 (TAPP1): molecular basis of lipid specificity.

C C Thomas 1, S Dowler 1, M Deak 1, D R Alessi 1, D M van Aalten 1
PMCID: PMC1222060  PMID: 11513726

Abstract

Phosphatidylinositol 3,4,5-trisphosphate [PtdIns(3,4,5)P(3)] and its immediate breakdown product PtdIns(3,4)P(2) function as second messengers in growth factor- and insulin-induced signalling pathways. One of the ways that these 3-phosphoinositides are known to regulate downstream signalling events is by attracting proteins that possess specific PtdIns-binding pleckstrin homology (PH) domains to the plasma membrane. Many of these proteins, such as protein kinase B, phosphoinositide-dependent kinase 1 and the dual adaptor for phosphotyrosine and 3-phosphoinositides (DAPP1) interact with both PtdIns(3,4,5)P(3) and PtdIns(3,4)P(2) with similar affinity. Recently, a new PH-domain-containing protein, termed tandem PH-domain-containing protein (TAPP) 1, was described which is the first protein reported to bind PtdIns(3,4)P(2) specifically. Here we describe the crystal structure of the PtdIns(3,4)P(2)-binding PH domain of TAPP1 at 1.4 A (1 A=0.1 nm) resolution in complex with an ordered citrate molecule. The structure is similar to the known structure of the PH domain of DAPP1 around the D-3 and D-4 inositol-phosphate-binding sites. However, a glycine residue adjacent to the D-5 inositol-phosphate-binding site in DAPP1 is substituted for a larger alanine residue in TAPP1, which also induces a conformational change in the neighbouring residues. We show that mutation of this glycine to alanine in DAPP1 converts DAPP1 into a TAPP1-like PH domain that only interacts with PtdIns(3,4)P(2), whereas the alanine to glycine mutation in TAPP1 permits the TAPP1 PH domain to interact with PtdIns(3,4,5)P(3).

Full Text

The Full Text of this article is available as a PDF (402.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson K. E., Lipp P., Bootman M., Ridley S. H., Coadwell J., Rönnstrand L., Lennartsson J., Holmes A. B., Painter G. F., Thuring J. DAPP1 undergoes a PI 3-kinase-dependent cycle of plasma-membrane recruitment and endocytosis upon cell stimulation. Curr Biol. 2000 Nov 16;10(22):1403–1412. doi: 10.1016/s0960-9822(00)00794-6. [DOI] [PubMed] [Google Scholar]
  2. Banfić H., Tang X., Batty I. H., Downes C. P., Chen C., Rittenhouse S. E. A novel integrin-activated pathway forms PKB/Akt-stimulatory phosphatidylinositol 3,4-bisphosphate via phosphatidylinositol 3-phosphate in platelets. J Biol Chem. 1998 Jan 2;273(1):13–16. doi: 10.1074/jbc.273.1.13. [DOI] [PubMed] [Google Scholar]
  3. Baraldi E., Djinovic Carugo K., Hyvönen M., Surdo P. L., Riley A. M., Potter B. V., O'Brien R., Ladbury J. E., Saraste M. Structure of the PH domain from Bruton's tyrosine kinase in complex with inositol 1,3,4,5-tetrakisphosphate. Structure. 1999 Apr 15;7(4):449–460. doi: 10.1016/s0969-2126(99)80057-4. [DOI] [PubMed] [Google Scholar]
  4. Cantrell D. A. Phosphoinositide 3-kinase signalling pathways. J Cell Sci. 2001 Apr;114(Pt 8):1439–1445. doi: 10.1242/jcs.114.8.1439. [DOI] [PubMed] [Google Scholar]
  5. Deak M., Casamayor A., Currie R. A., Downes C. P., Alessi D. R. Characterisation of a plant 3-phosphoinositide-dependent protein kinase-1 homologue which contains a pleckstrin homology domain. FEBS Lett. 1999 May 28;451(3):220–226. doi: 10.1016/s0014-5793(99)00556-6. [DOI] [PubMed] [Google Scholar]
  6. Dowler S., Currie R. A., Campbell D. G., Deak M., Kular G., Downes C. P., Alessi D. R. Identification of pleckstrin-homology-domain-containing proteins with novel phosphoinositide-binding specificities. Biochem J. 2000 Oct 1;351(Pt 1):19–31. doi: 10.1042/0264-6021:3510019. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dowler S., Currie R. A., Downes C. P., Alessi D. R. DAPP1: a dual adaptor for phosphotyrosine and 3-phosphoinositides. Biochem J. 1999 Aug 15;342(Pt 1):7–12. [PMC free article] [PubMed] [Google Scholar]
  8. Erneux C., Govaerts C., Communi D., Pesesse X. The diversity and possible functions of the inositol polyphosphate 5-phosphatases. Biochim Biophys Acta. 1998 Dec 8;1436(1-2):185–199. doi: 10.1016/s0005-2760(98)00132-5. [DOI] [PubMed] [Google Scholar]
  9. Ferguson K. M., Kavran J. M., Sankaran V. G., Fournier E., Isakoff S. J., Skolnik E. Y., Lemmon M. A. Structural basis for discrimination of 3-phosphoinositides by pleckstrin homology domains. Mol Cell. 2000 Aug;6(2):373–384. doi: 10.1016/s1097-2765(00)00037-x. [DOI] [PubMed] [Google Scholar]
  10. Ferguson K. M., Lemmon M. A., Schlessinger J., Sigler P. B. Crystal structure at 2.2 A resolution of the pleckstrin homology domain from human dynamin. Cell. 1994 Oct 21;79(2):199–209. doi: 10.1016/0092-8674(94)90190-2. [DOI] [PubMed] [Google Scholar]
  11. Gray A., Van Der Kaay J., Downes C. P. The pleckstrin homology domains of protein kinase B and GRP1 (general receptor for phosphoinositides-1) are sensitive and selective probes for the cellular detection of phosphatidylinositol 3,4-bisphosphate and/or phosphatidylinositol 3,4,5-trisphosphate in vivo. Biochem J. 1999 Dec 15;344(Pt 3):929–936. [PMC free article] [PubMed] [Google Scholar]
  12. Holm L., Sander C. Protein structure comparison by alignment of distance matrices. J Mol Biol. 1993 Sep 5;233(1):123–138. doi: 10.1006/jmbi.1993.1489. [DOI] [PubMed] [Google Scholar]
  13. Jones T. A., Zou J. Y., Cowan S. W., Kjeldgaard M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr A. 1991 Mar 1;47(Pt 2):110–119. doi: 10.1107/s0108767390010224. [DOI] [PubMed] [Google Scholar]
  14. Leevers S. J., Vanhaesebroeck B., Waterfield M. D. Signalling through phosphoinositide 3-kinases: the lipids take centre stage. Curr Opin Cell Biol. 1999 Apr;11(2):219–225. doi: 10.1016/s0955-0674(99)80029-5. [DOI] [PubMed] [Google Scholar]
  15. Lemmon M. A., Ferguson K. M. Signal-dependent membrane targeting by pleckstrin homology (PH) domains. Biochem J. 2000 Aug 15;350(Pt 1):1–18. [PMC free article] [PubMed] [Google Scholar]
  16. Lietzke S. E., Bose S., Cronin T., Klarlund J., Chawla A., Czech M. P., Lambright D. G. Structural basis of 3-phosphoinositide recognition by pleckstrin homology domains. Mol Cell. 2000 Aug;6(2):385–394. doi: 10.1016/s1097-2765(00)00038-1. [DOI] [PubMed] [Google Scholar]
  17. Mao Y., Nickitenko A., Duan X., Lloyd T. E., Wu M. N., Bellen H., Quiocho F. A. Crystal structure of the VHS and FYVE tandem domains of Hrs, a protein involved in membrane trafficking and signal transduction. Cell. 2000 Feb 18;100(4):447–456. doi: 10.1016/s0092-8674(00)80680-7. [DOI] [PubMed] [Google Scholar]
  18. Marshall A. J., Niiro H., Lerner C. G., Yun T. J., Thomas S., Disteche C. M., Clark E. A. A novel B lymphocyte-associated adaptor protein, Bam32, regulates antigen receptor signaling downstream of phosphatidylinositol 3-kinase. J Exp Med. 2000 Apr 17;191(8):1319–1332. doi: 10.1084/jem.191.8.1319. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Nicholls A., Sharp K. A., Honig B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins. 1991;11(4):281–296. doi: 10.1002/prot.340110407. [DOI] [PubMed] [Google Scholar]
  20. Perrakis A., Morris R., Lamzin V. S. Automated protein model building combined with iterative structure refinement. Nat Struct Biol. 1999 May;6(5):458–463. doi: 10.1038/8263. [DOI] [PubMed] [Google Scholar]
  21. Qiu Y., Kung H. J. Signaling network of the Btk family kinases. Oncogene. 2000 Nov 20;19(49):5651–5661. doi: 10.1038/sj.onc.1203958. [DOI] [PubMed] [Google Scholar]
  22. Rao V. R., Corradetti M. N., Chen J., Peng J., Yuan J., Prestwich G. D., Brugge J. S. Expression cloning of protein targets for 3-phosphorylated phosphoinositides. J Biol Chem. 1999 Dec 31;274(53):37893–37900. doi: 10.1074/jbc.274.53.37893. [DOI] [PubMed] [Google Scholar]
  23. Rodrigues G. A., Falasca M., Zhang Z., Ong S. H., Schlessinger J. A novel positive feedback loop mediated by the docking protein Gab1 and phosphatidylinositol 3-kinase in epidermal growth factor receptor signaling. Mol Cell Biol. 2000 Feb;20(4):1448–1459. doi: 10.1128/mcb.20.4.1448-1459.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Salmeen A., Andersen J. N., Myers M. P., Tonks N. K., Barford D. Molecular basis for the dephosphorylation of the activation segment of the insulin receptor by protein tyrosine phosphatase 1B. Mol Cell. 2000 Dec;6(6):1401–1412. doi: 10.1016/s1097-2765(00)00137-4. [DOI] [PubMed] [Google Scholar]
  25. Simpson L., Parsons R. PTEN: life as a tumor suppressor. Exp Cell Res. 2001 Mar 10;264(1):29–41. doi: 10.1006/excr.2000.5130. [DOI] [PubMed] [Google Scholar]
  26. Van der Kaay J., Beck M., Gray A., Downes C. P. Distinct phosphatidylinositol 3-kinase lipid products accumulate upon oxidative and osmotic stress and lead to different cellular responses. J Biol Chem. 1999 Dec 10;274(50):35963–35968. doi: 10.1074/jbc.274.50.35963. [DOI] [PubMed] [Google Scholar]
  27. Vanhaesebroeck B., Alessi D. R. The PI3K-PDK1 connection: more than just a road to PKB. Biochem J. 2000 Mar 15;346(Pt 3):561–576. [PMC free article] [PubMed] [Google Scholar]
  28. Venkateswarlu K., Oatey P. B., Tavaré J. M., Jackson T. R., Cullen P. J. Identification of centaurin-alpha1 as a potential in vivo phosphatidylinositol 3,4,5-trisphosphate-binding protein that is functionally homologous to the yeast ADP-ribosylation factor (ARF) GTPase-activating protein, Gcs1. Biochem J. 1999 Jun 1;340(Pt 2):359–363. [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES