Abstract
alpha-Crystallin, a member of the small heat-shock protein family and present in vertebrate eye lens, is known to prevent the aggregation of other proteins under conditions of stress. However, its role in the reactivation of enzymes from their non-native inactive states has not been clearly demonstrated. We have studied the effect of alpha-crystallin on the refolding of zeta-crystallin, a quinone oxidoreductase, from its different urea-denatured states. Co-refolding zeta-crystallin from its denatured state in 2.5 M urea with either calf eye lens alpha-crystallin or recombinant human alpha B-crystallin could significantly enhance its reactivation yield. alpha B-crystallin was found to be more efficient than alpha A-crystallin in chaperoning the refolding of zeta-crystallin. In order to understand the nature of the denatured state(s) of zeta-crystallin that can interact with alpha-crystallin, we have investigated the unfolding pathway of zeta-crystallin. We find that it unfolds through three distinct intermediates: an altered tetramer, a partially unfolded dimer, which is competent to fold back to its active state, and a partially unfolded monomer. The partially unfolded monomer is inactive, exhibits highly exposed hydrophobic surfaces and has significant secondary structural elements with little or no tertiary structure. This intermediate does not refold into the active state without assistance. alpha-Crystallin provides the required assistance and improves the reactivation yield several-fold.
Full Text
The Full Text of this article is available as a PDF (267.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bhat S. P., Nagineni C. N. alpha B subunit of lens-specific protein alpha-crystallin is present in other ocular and non-ocular tissues. Biochem Biophys Res Commun. 1989 Jan 16;158(1):319–325. doi: 10.1016/s0006-291x(89)80215-3. [DOI] [PubMed] [Google Scholar]
- Blakytny R., Harding J. J. Bovine and human alpha-crystallins as molecular chaperones: prevention of the inactivation of glutathione reductase by fructation. Exp Eye Res. 1997 Jun;64(6):1051–1058. doi: 10.1006/exer.1997.0299. [DOI] [PubMed] [Google Scholar]
- Cashikar A. G., Rao N. M. Unfolding pathway in red kidney bean acid phosphatase is dependent on ligand binding. J Biol Chem. 1996 Mar 1;271(9):4741–4746. doi: 10.1074/jbc.271.9.4741. [DOI] [PubMed] [Google Scholar]
- Das K. P., Surewicz W. K. On the substrate specificity of alpha-crystallin as a molecular chaperone. Biochem J. 1995 Oct 15;311(Pt 2):367–370. doi: 10.1042/bj3110367. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Das K. P., Surewicz W. K. Temperature-induced exposure of hydrophobic surfaces and its effect on the chaperone activity of alpha-crystallin. FEBS Lett. 1995 Aug 7;369(2-3):321–325. doi: 10.1016/0014-5793(95)00775-5. [DOI] [PubMed] [Google Scholar]
- Datta S. A., Rao C. M. Differential temperature-dependent chaperone-like activity of alphaA- and alphaB-crystallin homoaggregates. J Biol Chem. 1999 Dec 3;274(49):34773–34778. doi: 10.1074/jbc.274.49.34773. [DOI] [PubMed] [Google Scholar]
- Ehrnsperger M., Gräber S., Gaestel M., Buchner J. Binding of non-native protein to Hsp25 during heat shock creates a reservoir of folding intermediates for reactivation. EMBO J. 1997 Jan 15;16(2):221–229. doi: 10.1093/emboj/16.2.221. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Farahbakhsh Z. T., Huang Q. L., Ding L. L., Altenbach C., Steinhoff H. J., Horwitz J., Hubbell W. L. Interaction of alpha-crystallin with spin-labeled peptides. Biochemistry. 1995 Jan 17;34(2):509–516. doi: 10.1021/bi00002a015. [DOI] [PubMed] [Google Scholar]
- Ganea E., Harding J. J. Inhibition of 6-phosphogluconate dehydrogenase by carbamylation and protection by alpha-crystallin, a chaperone-like protein. Biochem Biophys Res Commun. 1996 May 15;222(2):626–631. doi: 10.1006/bbrc.1996.0794. [DOI] [PubMed] [Google Scholar]
- Ganea E., Harding J. J. alpha-crystallin assists the renaturation of glyceraldehyde-3-phosphate dehydrogenase. Biochem J. 2000 Feb 1;345(Pt 3):467–472. [PMC free article] [PubMed] [Google Scholar]
- Goldberg M. E., Rudolph R., Jaenicke R. A kinetic study of the competition between renaturation and aggregation during the refolding of denatured-reduced egg white lysozyme. Biochemistry. 1991 Mar 19;30(11):2790–2797. doi: 10.1021/bi00225a008. [DOI] [PubMed] [Google Scholar]
- Hess J. F., FitzGerald P. G. Protection of a restriction enzyme from heat inactivation by [alpha]-crystallin. Mol Vis. 1998 Dec 15;4:29–29. [PubMed] [Google Scholar]
- Holbrook J. J. Protein fluorescence of lactate dehydrogenase. Biochem J. 1972 Jul;128(4):921–931. doi: 10.1042/bj1280921. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hook D. W., Harding J. J. Alpha-crystallin acting as a molecular chaperone protects catalase against steroid-induced inactivation. FEBS Lett. 1996 Mar 18;382(3):281–284. doi: 10.1016/0014-5793(96)00134-2. [DOI] [PubMed] [Google Scholar]
- Hook D. W., Harding J. J. Molecular chaperones protect catalase against thermal stress. Eur J Biochem. 1997 Jul 1;247(1):380–385. doi: 10.1111/j.1432-1033.1997.00380.x. [DOI] [PubMed] [Google Scholar]
- Horwitz J. Alpha-crystallin can function as a molecular chaperone. Proc Natl Acad Sci U S A. 1992 Nov 1;89(21):10449–10453. doi: 10.1073/pnas.89.21.10449. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Huang Q. L., Russell P., Stone S. H., Zigler J. S., Jr Zeta-crystallin, a novel lens protein from the guinea pig. Curr Eye Res. 1987 May;6(5):725–732. doi: 10.3109/02713688709034836. [DOI] [PubMed] [Google Scholar]
- Ingolia T. D., Craig E. A. Four small Drosophila heat shock proteins are related to each other and to mammalian alpha-crystallin. Proc Natl Acad Sci U S A. 1982 Apr;79(7):2360–2364. doi: 10.1073/pnas.79.7.2360. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jakob U., Gaestel M., Engel K., Buchner J. Small heat shock proteins are molecular chaperones. J Biol Chem. 1993 Jan 25;268(3):1517–1520. [PubMed] [Google Scholar]
- Jakob U., Lilie H., Meyer I., Buchner J. Transient interaction of Hsp90 with early unfolding intermediates of citrate synthase. Implications for heat shock in vivo. J Biol Chem. 1995 Mar 31;270(13):7288–7294. doi: 10.1074/jbc.270.13.7288. [DOI] [PubMed] [Google Scholar]
- Jarabak R., Westley J., Dungan J. M., Horowitz P. A chaperone-mimetic effect of serum albumin on rhodanese. J Biochem Toxicol. 1993 Mar;8(1):41–48. doi: 10.1002/jbt.2570080107. [DOI] [PubMed] [Google Scholar]
- Klemenz R., Fröhli E., Steiger R. H., Schäfer R., Aoyama A. Alpha B-crystallin is a small heat shock protein. Proc Natl Acad Sci U S A. 1991 May 1;88(9):3652–3656. doi: 10.1073/pnas.88.9.3652. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kumar L. V., Ramakrishna T., Rao C. M. Structural and functional consequences of the mutation of a conserved arginine residue in alphaA and alphaB crystallins. J Biol Chem. 1999 Aug 20;274(34):24137–24141. doi: 10.1074/jbc.274.34.24137. [DOI] [PubMed] [Google Scholar]
- Landry S. J., Gierasch L. M. Polypeptide interactions with molecular chaperones and their relationship to in vivo protein folding. Annu Rev Biophys Biomol Struct. 1994;23:645–669. doi: 10.1146/annurev.bb.23.060194.003241. [DOI] [PubMed] [Google Scholar]
- Lee H. J., Chang G. G. Guanidine hydrochloride induced reversible dissociation and denaturation of duck delta2-crystallin. Eur J Biochem. 2000 Jul;267(13):3979–3985. doi: 10.1046/j.1432-1327.2000.01429.x. [DOI] [PubMed] [Google Scholar]
- Lindner R. A., Kapur A., Carver J. A. The interaction of the molecular chaperone, alpha-crystallin, with molten globule states of bovine alpha-lactalbumin. J Biol Chem. 1997 Oct 31;272(44):27722–27729. doi: 10.1074/jbc.272.44.27722. [DOI] [PubMed] [Google Scholar]
- Lowe J., Landon M., Pike I., Spendlove I., McDermott H., Mayer R. J. Dementia with beta-amyloid deposition: involvement of alpha B-crystallin supports two main diseases. Lancet. 1990 Aug 25;336(8713):515–516. doi: 10.1016/0140-6736(90)92075-s. [DOI] [PubMed] [Google Scholar]
- Marini I., Moschini R., Del Corso A., Mura U. Complete protection by alpha-crystallin of lens sorbitol dehydrogenase undergoing thermal stress. J Biol Chem. 2000 Oct 20;275(42):32559–32565. doi: 10.1074/jbc.M006133200. [DOI] [PubMed] [Google Scholar]
- Mendoza J. A., Lorimer G. H., Horowitz P. M. Chaperonin cpn60 from Escherichia coli protects the mitochondrial enzyme rhodanese against heat inactivation and supports folding at elevated temperatures. J Biol Chem. 1992 Sep 5;267(25):17631–17634. [PubMed] [Google Scholar]
- Ngo J. T., Klisak I., Dubin R. A., Piatigorsky J., Mohandas T., Sparkes R. S., Bateman J. B. Assignment of the alpha B-crystallin gene to human chromosome 11. Genomics. 1989 Nov;5(4):665–669. doi: 10.1016/0888-7543(89)90106-7. [DOI] [PubMed] [Google Scholar]
- Pace C. N. Determination and analysis of urea and guanidine hydrochloride denaturation curves. Methods Enzymol. 1986;131:266–280. doi: 10.1016/0076-6879(86)31045-0. [DOI] [PubMed] [Google Scholar]
- Ptitsyn O. B. Molten globule and protein folding. Adv Protein Chem. 1995;47:83–229. doi: 10.1016/s0065-3233(08)60546-x. [DOI] [PubMed] [Google Scholar]
- Quax-Jeuken Y., Quax W., van Rens G., Khan P. M., Bloemendal H. Complete structure of the alpha B-crystallin gene: conservation of the exon-intron distribution in the two nonlinked alpha-crystallin genes. Proc Natl Acad Sci U S A. 1985 Sep;82(17):5819–5823. doi: 10.1073/pnas.82.17.5819. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rajaraman K., Raman B., Ramakrishna T., Rao C. M. Interaction of human recombinant alphaA- and alphaB-crystallins with early and late unfolding intermediates of citrate synthase on its thermal denaturation. FEBS Lett. 2001 May 25;497(2-3):118–123. doi: 10.1016/s0014-5793(01)02451-6. [DOI] [PubMed] [Google Scholar]
- Rajaraman K., Raman B., Ramakrishna T., Rao C. M. The chaperone-like alpha-crystallin forms a complex only with the aggregation-prone molten globule state of alpha-lactalbumin. Biochem Biophys Res Commun. 1998 Aug 28;249(3):917–921. doi: 10.1006/bbrc.1998.9242. [DOI] [PubMed] [Google Scholar]
- Rajaraman K., Raman B., Rao C. M. Molten-globule state of carbonic anhydrase binds to the chaperone-like alpha-crystallin. J Biol Chem. 1996 Nov 1;271(44):27595–27600. doi: 10.1074/jbc.271.44.27595. [DOI] [PubMed] [Google Scholar]
- Raman B., Ramakrishna T., Rao C. M. Effect of the chaperone-like alpha-crystallin on the refolding of lysozyme and ribonuclease A. FEBS Lett. 1997 Oct 27;416(3):369–372. doi: 10.1016/s0014-5793(97)01240-4. [DOI] [PubMed] [Google Scholar]
- Raman B., Ramakrishna T., Rao C. M. Rapid refolding studies on the chaperone-like alpha-crystallin. Effect of alpha-crystallin on refolding of beta- and gamma-crystallins. J Biol Chem. 1995 Aug 25;270(34):19888–19892. doi: 10.1074/jbc.270.34.19888. [DOI] [PubMed] [Google Scholar]
- Raman B., Ramakrishna T., Rao C. M. Temperature dependent chaperone-like activity of alpha-crystallin. FEBS Lett. 1995 May 29;365(2-3):133–136. doi: 10.1016/0014-5793(95)00440-k. [DOI] [PubMed] [Google Scholar]
- Raman B., Rao C. M. Chaperone-like activity and quaternary structure of alpha-crystallin. J Biol Chem. 1994 Nov 4;269(44):27264–27268. [PubMed] [Google Scholar]
- Raman B., Rao C. M. Chaperone-like activity and temperature-induced structural changes of alpha-crystallin. J Biol Chem. 1997 Sep 19;272(38):23559–23564. doi: 10.1074/jbc.272.38.23559. [DOI] [PubMed] [Google Scholar]
- Rao P. V., Horwitz J., Zigler J. S., Jr Alpha-crystallin, a molecular chaperone, forms a stable complex with carbonic anhydrase upon heat denaturation. Biochem Biophys Res Commun. 1993 Feb 15;190(3):786–793. doi: 10.1006/bbrc.1993.1118. [DOI] [PubMed] [Google Scholar]
- Rao P. V., Horwitz J., Zigler J. S., Jr Chaperone-like activity of alpha-crystallin. The effect of NADPH on its interaction with zeta-crystallin. J Biol Chem. 1994 May 6;269(18):13266–13272. [PubMed] [Google Scholar]
- Rao P. V., Krishna C. M., Zigler J. S., Jr Identification and characterization of the enzymatic activity of zeta-crystallin from guinea pig lens. A novel NADPH:quinone oxidoreductase. J Biol Chem. 1992 Jan 5;267(1):96–102. [PubMed] [Google Scholar]
- Rao P. V., Zigler J. S., Jr Extremely high levels of NADPH in guinea pig lens: correlation with zeta-crystallin concentration. Biochem Biophys Res Commun. 1990 Mar 30;167(3):1221–1228. doi: 10.1016/0006-291x(90)90654-6. [DOI] [PubMed] [Google Scholar]
- Rao P. V., Zigler J. S., Jr Mutant zeta-crystallin from guinea-pig hereditary cataracts has altered structural and enzymatic properties. Exp Eye Res. 1992 Apr;54(4):627–630. doi: 10.1016/0014-4835(92)90142-f. [DOI] [PubMed] [Google Scholar]
- Rawat U., Rao M. Interactions of chaperone alpha-crystallin with the molten globule state of xylose reductase. Implications for reconstitution of the active enzyme. J Biol Chem. 1998 Apr 17;273(16):9415–9423. doi: 10.1074/jbc.273.16.9415. [DOI] [PubMed] [Google Scholar]
- Renkawek K., Voorter C. E., Bosman G. J., van Workum F. P., de Jong W. W. Expression of alpha B-crystallin in Alzheimer's disease. Acta Neuropathol. 1994;87(2):155–160. doi: 10.1007/BF00296185. [DOI] [PubMed] [Google Scholar]
- Sax C. M., Piatigorsky J. Expression of the alpha-crystallin/small heat-shock protein/molecular chaperone genes in the lens and other tissues. Adv Enzymol Relat Areas Mol Biol. 1994;69:155–201. doi: 10.1002/9780470123157.ch5. [DOI] [PubMed] [Google Scholar]
- Semisotnov G. V., Rodionova N. A., Razgulyaev O. I., Uversky V. N., Gripas' A. F., Gilmanshin R. I. Study of the "molten globule" intermediate state in protein folding by a hydrophobic fluorescent probe. Biopolymers. 1991 Jan;31(1):119–128. doi: 10.1002/bip.360310111. [DOI] [PubMed] [Google Scholar]
- Siezen R. J., Bindels J. G., Hoenders H. J. The quaternary structure of bovine alpha-crystallin. Size and charge microheterogeneity: more than 1000 different hybrids? Eur J Biochem. 1978 Nov 15;91(2):387–396. doi: 10.1111/j.1432-1033.1978.tb12691.x. [DOI] [PubMed] [Google Scholar]
- Stinson R. A., Holbrook J. J. Equilibrium binding of nicotinamide nucleotides to lactate dehydrogenases. Biochem J. 1973 Apr;131(4):719–728. doi: 10.1042/bj1310719. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stryer L. The interaction of a naphthalene dye with apomyoglobin and apohemoglobin. A fluorescent probe of non-polar binding sites. J Mol Biol. 1965 Sep;13(2):482–495. doi: 10.1016/s0022-2836(65)80111-5. [DOI] [PubMed] [Google Scholar]
- Sun T. X., Das B. K., Liang J. J. Conformational and functional differences between recombinant human lens alphaA- and alphaB-crystallin. J Biol Chem. 1997 Mar 7;272(10):6220–6225. doi: 10.1074/jbc.272.10.6220. [DOI] [PubMed] [Google Scholar]
- Takemoto L., Emmons T., Horwitz J. The C-terminal region of alpha-crystallin: involvement in protection against heat-induced denaturation. Biochem J. 1993 Sep 1;294(Pt 2):435–438. doi: 10.1042/bj2940435. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Uversky V. N. Use of fast protein size-exclusion liquid chromatography to study the unfolding of proteins which denature through the molten globule. Biochemistry. 1993 Dec 7;32(48):13288–13298. doi: 10.1021/bi00211a042. [DOI] [PubMed] [Google Scholar]
- Wang K., Spector A. The chaperone activity of bovine alpha crystallin. Interaction with other lens crystallins in native and denatured states. J Biol Chem. 1994 May 6;269(18):13601–13608. [PubMed] [Google Scholar]