Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2001 Nov 1;359(Pt 3):621–629. doi: 10.1042/0264-6021:3590621

Sulphatides trigger polymorphonuclear granulocyte spreading on collagen-coated surfaces and inhibit subsequent activation of 5-lipoxygenase.

G F Sud'ina 1, T G Brock 1, M A Pushkareva 1, S I Galkina 1, D V Turutin 1, M Peters-Golden 1, V Ullrich 1
PMCID: PMC1222184  PMID: 11672437

Abstract

Sulphatides are sulphate esters of galactocerebrosides that are present on the surfaces of many cell types and act as specific ligands to selectins. The present study was undertaken to investigate the effect of sulphatides on polymorphonuclear granulocyte (PMN) attachment, spreading and 5-lipoxygenase (5-LO) metabolism. Sulphatides, but not non-sulphated galactocerebrosides, dose-dependently enhanced attachment to collagen, as measured by the myeloperoxidase assay. Studies with blocking antibodies indicated that the increased attachment was mediated by CD11b/CD18 (Mac-1) beta 2 integrin. Scanning electron microscopy indicated that sulphatides also greatly enhanced the degree of cell spreading. In PMNs treated in suspension, sulphatides had no effect on the ionophore A23187-stimulated release of arachidonic acid and the synthesis of 5-LO metabolites. In contrast, in PMNs attached to collagen, the enzymic conversion of arachidonic acid by 5-LO was inhibited by sulphatides. Inhibition of 5-LO metabolism by sulphatides was observed even in the presence of exogenous substrate, suggesting that sulphatides directly inhibited 5-LO action. Consistent with this, sulphatides interfered with ionophore-induced translocation of the 5-LO to the nuclear envelope. Substances competing with sulphatide binding to cells, like dextran sulphate, or a strong inhibitor of cell spreading, like the actin-polymerizing agent jasplakinolide, prevented the effects of sulphatides on PMN attachment and spreading and leukotriene synthesis. We conclude that shape changes occurring in response to sulphatides specifically impair PMN leukotriene synthesis by inhibiting translocation of 5-LO.

Full Text

The Full Text of this article is available as a PDF (338.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aruffo A., Kolanus W., Walz G., Fredman P., Seed B. CD62/P-selectin recognition of myeloid and tumor cell sulfatides. Cell. 1991 Oct 4;67(1):35–44. doi: 10.1016/0092-8674(91)90570-o. [DOI] [PubMed] [Google Scholar]
  2. Bath P. M., Booth R. F., Hassall D. G. Monocyte-lymphocyte discrimination in a new microtitre-based adhesion assay. J Immunol Methods. 1989 Mar 10;118(1):59–65. doi: 10.1016/0022-1759(89)90053-7. [DOI] [PubMed] [Google Scholar]
  3. Bengtsson T., Grenegård M., Olsson A., Sjögren F., Stendahl O., Zalavary S. Sulfatide-induced L-selectin activation generates intracellular oxygen radicals in human neutrophils: modulation by extracellular adenosine. Biochim Biophys Acta. 1996 Aug 28;1313(2):119–129. doi: 10.1016/0167-4889(96)00059-6. [DOI] [PubMed] [Google Scholar]
  4. Brock T. G., Anderson J. A., Fries F. P., Peters-Golden M., Sporn P. H. Decreased leukotriene C4 synthesis accompanies adherence-dependent nuclear import of 5-lipoxygenase in human blood eosinophils. J Immunol. 1999 Feb 1;162(3):1669–1676. [PubMed] [Google Scholar]
  5. Brock T. G., McNish R. W., Bailie M. B., Peters-Golden M. Rapid import of cytosolic 5-lipoxygenase into the nucleus of neutrophils after in vivo recruitment and in vitro adherence. J Biol Chem. 1997 Mar 28;272(13):8276–8280. doi: 10.1074/jbc.272.13.8276. [DOI] [PubMed] [Google Scholar]
  6. Bubb M. R., Senderowicz A. M., Sausville E. A., Duncan K. L., Korn E. D. Jasplakinolide, a cytotoxic natural product, induces actin polymerization and competitively inhibits the binding of phalloidin to F-actin. J Biol Chem. 1994 May 27;269(21):14869–14871. [PubMed] [Google Scholar]
  7. Carlos T. M., Harlan J. M. Leukocyte-endothelial adhesion molecules. Blood. 1994 Oct 1;84(7):2068–2101. [PubMed] [Google Scholar]
  8. Constantin G., Laudanna C., Baron P., Berton G. Sulfatides trigger cytokine gene expression and secretion in human monocytes. FEBS Lett. 1994 Aug 15;350(1):66–70. doi: 10.1016/0014-5793(94)00735-7. [DOI] [PubMed] [Google Scholar]
  9. Cramer L. P. Role of actin-filament disassembly in lamellipodium protrusion in motile cells revealed using the drug jasplakinolide. Curr Biol. 1999 Oct 7;9(19):1095–1105. doi: 10.1016/s0960-9822(99)80478-3. [DOI] [PubMed] [Google Scholar]
  10. Dalton S. L., Scharf E., Briesewitz R., Marcantonio E. E., Assoian R. K. Cell adhesion to extracellular matrix regulates the life cycle of integrins. Mol Biol Cell. 1995 Dec;6(12):1781–1791. doi: 10.1091/mbc.6.12.1781. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Franklin C. C., Kraft A. S. Conditional expression of the mitogen-activated protein kinase (MAPK) phosphatase MKP-1 preferentially inhibits p38 MAPK and stress-activated protein kinase in U937 cells. J Biol Chem. 1997 Jul 4;272(27):16917–16923. doi: 10.1074/jbc.272.27.16917. [DOI] [PubMed] [Google Scholar]
  12. Gallin J. I., Seligmann B. E., Cramer E. B., Schiffmann E., Fletcher M. P. Effects of vitamin K on human neutrophil function. J Immunol. 1982 Mar;128(3):1399–1408. [PubMed] [Google Scholar]
  13. Gebbink M. F., Zondag G. C., Koningstein G. M., Feiken E., Wubbolts R. W., Moolenaar W. H. Cell surface expression of receptor protein tyrosine phosphatase RPTP mu is regulated by cell-cell contact. J Cell Biol. 1995 Oct;131(1):251–260. doi: 10.1083/jcb.131.1.251. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Ginsberg M. H., Du X., Plow E. F. Inside-out integrin signalling. Curr Opin Cell Biol. 1992 Oct;4(5):766–771. doi: 10.1016/0955-0674(92)90099-x. [DOI] [PubMed] [Google Scholar]
  15. Gonzalez E., Zambrano F. Possible role of sulphatide in the K+-activated phosphatase activity. Biochim Biophys Acta. 1983 Feb 9;728(1):66–72. doi: 10.1016/0005-2736(83)90437-6. [DOI] [PubMed] [Google Scholar]
  16. Green P. J., Tamatani T., Watanabe T., Miyasaka M., Hasegawa A., Kiso M., Yuen C. T., Stoll M. S., Feizi T. High affinity binding of the leucocyte adhesion molecule L-selectin to 3'-sulphated-Le(a) and -Le(x) oligosaccharides and the predominance of sulphate in this interaction demonstrated by binding studies with a series of lipid-linked oligosaccharides. Biochem Biophys Res Commun. 1992 Oct 15;188(1):244–251. doi: 10.1016/0006-291x(92)92376-9. [DOI] [PubMed] [Google Scholar]
  17. Healy A. M., Peters-Golden M., Yao J. P., Brock T. G. Identification of a bipartite nuclear localization sequence necessary for nuclear import of 5-lipoxygenase. J Biol Chem. 1999 Oct 15;274(42):29812–29818. doi: 10.1074/jbc.274.42.29812. [DOI] [PubMed] [Google Scholar]
  18. Hogg J. C., Doerschuk C. M. Leukocyte traffic in the lung. Annu Rev Physiol. 1995;57:97–114. doi: 10.1146/annurev.ph.57.030195.000525. [DOI] [PubMed] [Google Scholar]
  19. Klebe R. J., Mock P. J. Effect of glycosaminoglycans on fibronectin-mediated cell attachment. J Cell Physiol. 1982 Jul;112(1):5–9. doi: 10.1002/jcp.1041120103. [DOI] [PubMed] [Google Scholar]
  20. Laudanna C., Constantin G., Baron P., Scarpini E., Scarlato G., Cabrini G., Dechecchi C., Rossi F., Cassatella M. A., Berton G. Sulfatides trigger increase of cytosolic free calcium and enhanced expression of tumor necrosis factor-alpha and interleukin-8 mRNA in human neutrophils. Evidence for a role of L-selectin as a signaling molecule. J Biol Chem. 1994 Feb 11;269(6):4021–4026. [PubMed] [Google Scholar]
  21. Lepley R. A., Fitzpatrick F. A. 5-Lipoxygenase contains a functional Src homology 3-binding motif that interacts with the Src homology 3 domain of Grb2 and cytoskeletal proteins. J Biol Chem. 1994 Sep 30;269(39):24163–24168. [PubMed] [Google Scholar]
  22. Middelhoven P. J., van Buul J. D., Kleijer M., Roos D., Hordijk P. L. Actin polymerization induces shedding of FcgammaRIIIb (CD16) from human neutrophils. Biochem Biophys Res Commun. 1999 Feb 24;255(3):568–574. doi: 10.1006/bbrc.1999.0244. [DOI] [PubMed] [Google Scholar]
  23. Mulligan M. S., Warner R. L., Lowe J. B., Smith P. L., Suzuki Y., Miyasaka M., Yamaguchi S., Ohta Y., Tsukada Y., Kiso M. In vitro and in vivo selectin-blocking activities of sulfated lipids and sulfated sialyl compounds. Int Immunol. 1998 May;10(5):569–575. doi: 10.1093/intimm/10.5.569. [DOI] [PubMed] [Google Scholar]
  24. Rieu P., Lesavre P., Halbwachs-Mecarelli L. Evidence for integrins other than beta 2 on polymorphonuclear neutrophils: expression of alpha 6 beta 1 heterodimer. J Leukoc Biol. 1993 May;53(5):576–582. doi: 10.1002/jlb.53.5.576. [DOI] [PubMed] [Google Scholar]
  25. Roberts D. D., Ginsburg V. Sulfated glycolipids and cell adhesion. Arch Biochem Biophys. 1988 Dec;267(2):405–415. doi: 10.1016/0003-9861(88)90046-x. [DOI] [PubMed] [Google Scholar]
  26. Roberts R. L., Nath J., Friedman M. M., Gallin J. I. Effects of taxol on human neutrophils. J Immunol. 1982 Nov;129(5):2134–2141. [PubMed] [Google Scholar]
  27. Schierwagen C., Bylund-Fellenius A. C., Lundberg C. Improved method for quantification of tissue PMN accumulation measured by myeloperoxidase activity. J Pharmacol Methods. 1990 May;23(3):179–186. doi: 10.1016/0160-5402(90)90061-o. [DOI] [PubMed] [Google Scholar]
  28. Sheikh S., Gratzer W. B., Pinder J. C., Nash G. B. Actin polymerisation regulates integrin-mediated adhesion as well as rigidity of neutrophils. Biochem Biophys Res Commun. 1997 Sep 29;238(3):910–915. doi: 10.1006/bbrc.1997.7407. [DOI] [PubMed] [Google Scholar]
  29. Simon S. I., Burns A. R., Taylor A. D., Gopalan P. K., Lynam E. B., Sklar L. A., Smith C. W. L-selectin (CD62L) cross-linking signals neutrophil adhesive functions via the Mac-1 (CD11b/CD18) beta 2-integrin. J Immunol. 1995 Aug 1;155(3):1502–1514. [PubMed] [Google Scholar]
  30. Simon S. I., Cherapanov V., Nadra I., Waddell T. K., Seo S. M., Wang Q., Doerschuk C. M., Downey G. P. Signaling functions of L-selectin in neutrophils: alterations in the cytoskeleton and colocalization with CD18. J Immunol. 1999 Sep 1;163(5):2891–2901. [PubMed] [Google Scholar]
  31. Smolen J. E., Petersen T. K., Koch C., O'Keefe S. J., Hanlon W. A., Seo S., Pearson D., Fossett M. C., Simon S. I. L-selectin signaling of neutrophil adhesion and degranulation involves p38 mitogen-activated protein kinase. J Biol Chem. 2000 May 26;275(21):15876–15884. doi: 10.1074/jbc.M906232199. [DOI] [PubMed] [Google Scholar]
  32. Squadrito F., Bagnato G., Altavilla D., Ferlito M., Campo G. M., Squadrito G., Urna G., Sardella A., Arlotta M., Minutoli L. Effect of sulfatide on acute lung injury during endotoxemia in rats. Life Sci. 1999;65(24):2541–2552. doi: 10.1016/s0024-3205(99)00523-8. [DOI] [PubMed] [Google Scholar]
  33. Sud'ina G. F., Mirzoeva O. K., Galkina S. I., Pushkareva M. A., Ullrich V. Involvement of ecto-ATPase and extracellular ATP in polymorphonuclear granulocyte-endothelial interactions. FEBS Lett. 1998 Feb 20;423(2):243–248. doi: 10.1016/s0014-5793(98)00102-1. [DOI] [PubMed] [Google Scholar]
  34. Sud'ina G. F., Pushkareva M. A., Galkina S. I., Surkov S. A., Mehl M., Ullrich V. Effects of suramin on PMN interactions with different surfaces. Biosci Rep. 1999 Dec;19(6):547–558. doi: 10.1023/a:1020214928298. [DOI] [PubMed] [Google Scholar]
  35. Ueda K., Nozawa M., Miyasaka M., Akamatsu J., Tajima S. Sulfatide protects rat skin flaps against ischemia-reperfusion injury. J Surg Res. 1998 Dec;80(2):200–204. doi: 10.1006/jsre.1998.5443. [DOI] [PubMed] [Google Scholar]
  36. Werz O., Klemm J., Samuelsson B., Rådmark O. 5-lipoxygenase is phosphorylated by p38 kinase-dependent MAPKAP kinases. Proc Natl Acad Sci U S A. 2000 May 9;97(10):5261–5266. doi: 10.1073/pnas.050588997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Woods J. W., Evans J. F., Ethier D., Scott S., Vickers P. J., Hearn L., Heibein J. A., Charleson S., Singer I. I. 5-lipoxygenase and 5-lipoxygenase-activating protein are localized in the nuclear envelope of activated human leukocytes. J Exp Med. 1993 Dec 1;178(6):1935–1946. doi: 10.1084/jem.178.6.1935. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Yamamoto K., Yamamoto M. Cell adhesion receptors for native and denatured type I collagens and fibronectin in rabbit arterial smooth muscle cells in culture. Exp Cell Res. 1994 Sep;214(1):258–263. doi: 10.1006/excr.1994.1256. [DOI] [PubMed] [Google Scholar]
  39. Yoshida T., Fennie C., Lasky L. A., Lee Y. C. A liquid-phase binding analysis for L-selectin. A strong dependency on highly clustered sulfate groups. Eur J Biochem. 1994 Jun 1;222(2):703–709. doi: 10.1111/j.1432-1033.1994.tb18915.x. [DOI] [PubMed] [Google Scholar]
  40. Zambrano F., Rojas M. Sulphatide content in a membrane fraction isolated from rabbit gastric mucosal: its possible role in the enzyme involved in H+ pumping. Arch Biochem Biophys. 1987 Feb 15;253(1):87–93. doi: 10.1016/0003-9861(87)90640-0. [DOI] [PubMed] [Google Scholar]
  41. van den Berg J. M., Mul F. P., Schippers E., Weening J. J., Roos D., Kuijpers T. W. Beta1 integrin activation on human neutrophils promotes beta2 integrin-mediated adhesion to fibronectin. Eur J Immunol. 2001 Jan;31(1):276–284. doi: 10.1002/1521-4141(200101)31:1<276::AID-IMMU276>3.0.CO;2-D. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES