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Recently developed molecular techniques have revolutionized the
epidemiology of tuberculosis. Multiple studies have used these
tools to examine the population structure of Mycobacterium tu-
berculosis isolates in different communities. The distributions of
clusters of M. tuberculosis isolates in these settings may variously
reflect social mixing patterns or the differential fitness of specific
clones of the organism. We developed an individual-based micro-
simulation of tuberculosis transmission to explore social and de-
mographic determinants of cluster distribution and to observe the
effect of transmission dynamics on the empiric data from molecular
epidemiologic studies. Our results demonstrate that multiple host-
related factors contribute to wide variation in cluster distributions
even when all strains of the organism are assumed to be equally
transmissible. These host characteristics include interventions such
as chemotherapy, vaccination and chemoprophylaxis, HIV preva-
lence, the age structure of the population, and the prevalence of
latent tuberculosis infection. We consider the implications of these
results for the interpretation of cluster studies of M. tuberculosis as
well as the more general application of microsimulation models to
infectious disease epidemiology.

Over the past 10 years, molecular tools have become available
that have changed the way that epidemiologists study the

transmission of infectious disease (1). In addition to their role in
detecting unsuspected transmission links (2–4), molecular mark-
ers are increasingly being used to study transmission patterns
within populations and to evaluate host- and strain-specific risk
factors for disease spread (5, 6). Nowhere has this approach been
used more rigorously than in the pioneering work on the
molecular epidemiology of tuberculosis (TB). Since the devel-
opment of standardized methods for DNA fingerprinting of
Mycobacterium tuberculosis, molecular techniques have been
used to estimate the fraction of cases attributable to recent
transmission of M. tuberculosis (7–14), identify host-specific risk
factors for disease spread (15–18), document exogenous rein-
fection (19–21), and study patterns of drug resistance (22–24).
Investigators also have begun to use these methods to explore
potential strain-specific differences in bacterial phenotypes such
as tissue tropism, virulence, and transmissibility (25, 26).

This research has shown that the genetic diversity of M.
tuberculosis isolates from different human communities can vary
considerably (27, 28). Clusters of identical isolates are assumed
to share DNA fingerprints as a result of the spread of the
organism among the human hosts who harbor the isolates in the
cluster. Patients with TB whose isolates cannot be grouped into
clusters, i.e., those with unique DNA fingerprints, are assumed
to have disease that results from the reactivation of latent
infection acquired in the past. Variation in the distribution of
clusters of M. tuberculosis isolates in different communities is
thought to reflect different TB transmission dynamics and
intensities in diverse parts of the world. A high proportion of
clustered isolates in a community suggests ongoing TB trans-
mission, whereas a predominance of unique cases implies that
most TB cases are caused by reactivation of remote infection
without further spread (29, 30).

The distribution of genotypes within bacterial populations also
may reflect differences in the selective advantage of specific
clones, especially those that are more transmissible or ‘‘fit’’ than
their counterparts (31, 32). Clones that are especially transmis-
sible would be expected to infect more human hosts per contact
and therefore may belong to larger clusters than less-
transmissible clones. Multiple molecular studies of Neisseria
meningitides, for example, have used this approach to charac-
terize pandemic strains that were shown to be genetically distinct
from the strains isolated in sporadic cases of meningitis (33).
Several recent epidemiologic studies of TB have focused on large
clusters of cases caused by a single genotype or strain of M.
tuberculosis (34–38). In some cases, these outbreaks were attrib-
uted to an increased capacity for transmission and�or replication
by the specific strain (37). Other studies described highly mobile
or complex social networks that may have facilitated the prolific
spread of the organism (34–36, 38).

In practice, it can be difficult to distinguish between the effects
of variability in strain behavior and the often complex transmis-
sion dynamics of TB in the analysis of differential cluster size.
One way to address this problem is to consider the range of
cluster sizes that might be expected in the absence of strain-
specific variation in transmissibility, i.e., to establish an expec-
tation of cluster distributions consistent with the null hypothesis
that all strains are equally transmissible. Over the past decade,
mathematical models of the transmission dynamics of TB have
been developed that have helped elucidate the factors that
impact TB epidemics (39–44). Several recent studies have begun
to use some of the concepts developed in these models to
examine the relationship between model parameters such as the
basic reproductive rate and cluster size (45, 46). Although this
research has important implications for interpreting the results
of molecular epidemiology, few studies have explicitly examined
the impact of the social and demographic variables that affect TB
dynamics on the population structure of mycobacterial isolates.
This report describes a stochastic model of TB transmission that
generates cluster distributions as well as estimates of the annual
incidences of TB infection and disease for a range of different
input variables. Because few of the parameters relevant to TB
transmission have been well characterized, the purpose of this
study is not to predict distributions of cluster size in specific
contexts. It is rather to explore the impact of different TB
transmission dynamics on the population structure of isolates of
M. tuberculosis and, more generally, to provide a link between
the disciplines of infectious disease dynamics and molecular
epidemiology.

Methods
Simulation Model. A microsimulation model of TB transmission
was used to generate dynamic transmission chains of TB. The
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model assumptions, parameters, and variables are described in
detail in the text and Tables 2–5, which are published as
supporting information on the PNAS web site, www.pnas.org.
Briefly, the model specifies a distribution of discrete individuals,
each of which is characterized by a vector of variables that
determine the risks of TB infection, clinical disease, and trans-
mitting infection once infected. Individuals are assigned to a
series of social and physical spaces such as households, neigh-
borhoods, and multineighborhood communities. The model also
specifies the stochastic processes by which latent disease reac-
tivates, infection is transmitted within and between social spaces,
infection progresses to primary TB, vaccination or previous
infection confers immunity, and individuals recover from infec-
tion. Because this model is meant to recapitulate the transmis-
sion dynamic described by state-compartmental models, param-
eter values were chosen to correspond to mean values used in
previously published deterministic models of TB transmission.
Individuals to whom disease is transmitted during the simulation
acquire a variable reflecting the specific strain that is the source
of their infection; thus chains of disease transmission can be
identified as ‘‘clusters’’ of cases sharing a specific strain identi-
fier. The model is run over a series of time steps, during which
these stochastic processes may occur. To simulate the data
collection of an epidemiologic study, the simulation was run for
208 1-week time steps for a total of 4 years. We assumed that
molecular markers did not mutate during that period, and
therefore all cases that shared a molecular marker were consid-
ered to belong to a single cluster. Output of the model includes
standard measures of the incidence of infection and disease, the
prevalence of infectious disease over time, and a count of cluster
sizes.

TB Control Strategies. To assess and compare the impact of
specific interventions against TB on the distribution of cluster
sizes, we considered the effects of several different TB control
strategies on clustering patterns. These included the use of
bacillus Calmette–Guérin vaccination, case finding and treat-
ment, and the use of chemoprophylaxis in the exposed. Because
it is widely held that effective control measures will diminish
clustering, our aim was to explore the possibility that different
control measures would differentially impact cluster distribu-
tions. We evaluated a range of coverage levels for each of these
strategies, assuming that these levels were attained at the
beginning of the simulated epidemic and maintained until the
end of the simulation period.

HIV Prevalence. We considered the possibility that HIV epidemics
may have an impact on the clustering of TB cases. Although TB
incidence clearly rises in areas with high HIV prevalence, this
rise results from an increase in the rates of both primary and

reactivation disease in the HIV-infected. Furthermore, because
TB disease in the HIV-infected is often extrapulmonary, the
overall effect of HIV on transmission and hence the size of
clusters can be difficult to predict. In this analysis, we evaluated
cluster distributions for logarithmic increases in HIV prevalence,
assuming that other potential determinants of cluster distribu-
tion were held constant. In this way, we studied how much
variability in cluster size across different communities might
occur as the result of variations in levels of HIV prevalence.

Prevalence of Latent TB. To study the link between transmission
dynamics and cluster size, we examined and compared cluster
distributions in areas with differing burdens of TB as reflected
by the prevalence of latent infection at the beginning of the
simulation run. Because previous investigators have noted more
isolate diversity than expected in some high burden settings, this
analysis was designed to explore the possibility that cluster sizes
may be constrained by the presence of individuals who are
partially immune to reinfection in areas of high prevalence of
latent infection. We simulated TB epidemics for five different
levels of latent TB prevalence holding other variables and
parameters constant and assuming, unrealistically, that trans-
mission parameters were identical in these five settings.

Demographics. We evaluated model output for three different
population age structures. Because TB behaves differently in
different age groups, we hypothesized that cluster distributions
may vary among populations with varying age composition. We
chose age distributions consistent with those found in most-
developed, moderately developed, and least-developed coun-
tries to simulate a wide range of demographic conditions.

Results
We examined the consistency of the basic assumptions of the
model with current estimates of disease incidence by generating
country-specific transmission scenarios and comparing the inci-
dence of active disease to consensus estimates of disease burden
in these settings. When transmission parameters were allowed to
vary within reasonable bounds, each of these models generated
an incidence approximately consistent with that reported from
the specific setting modeled. Table 1 presents the modeled
incidence of infection and disease, summary statistics of the
cluster distributions, and the consensus estimates of incidence
for nine of these settings. In these modeled settings, the pro-
portion of unique isolates is not correlated strongly with either
the incidence of clinical TB or the annual risk of infection.

Interventions. When other variables are held constant, modeled
interventions that effectively reduce the transmission of M.
tuberculosis such as a transmission-blocking vaccine, chemopro-

Table 1. Model-based output statistics for five settings from a microsimulation of
tuberculosis transmission

Output statistics

High burden Moderate burden Low burden

Sudan NY prison Algeria U.S. prison Netherlands

Tuberculosis incidence* 190 581 32 82 14
Consensus incidence estimates 200 NA† 44 NA† 10
ARI‡ 0.025 0.046 0.003 0.005 0.001
Maximum cluster size 87 19 9 17 15
Mean cluster size 10.2 3.2 1.7 2.9 1.7
Proportion unique isolates 0.181 0.253 0.432 0.289 0.490

Consensus incidence estimates are shown for comparison with estimates obtained from the model.
*Incidence per 100,000.
†No data available.
‡Annual risk of infection.
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phylaxis of case contacts, and chemotherapy all cause a decrease
in mean cluster size and a concomitant increase in the propor-
tion of unique isolates (Fig. 1). Conversely, interventions that
may reduce the incidence of reactivation but do not block
transmission directly such as screening and treatment of latent
infection or a vaccine that prevents endogenous reactivation in
previously infected individuals reduce the number of clusters
without impacting cluster size. Although both types of interven-
tion ultimately reduce the number of cases of disease that results
from ongoing transmission, they have very different effects on
the distribution of cluster size and the proportions of unique and
clustered isolates. These results suggest that monitoring the
change in cluster sizes over time may not provide an adequate
index of the impact of control programs on TB incidence.

HIV Prevalence. Fig. 1 shows the impact of HIV prevalence on
model output. Not surprisingly, the model predicts that an
increase in HIV prevalence will lead directly to an increased
incidence of both TB infection and disease, the extent of which
will depend on relative rates of reactivation and primary disease
in the HIV-infected and the infectiousness of HIV-infected TB
cases. More surprisingly, the model predicts that mean cluster
size will fall as HIV prevalence increases despite the increase in
incidence. This reduction in cluster size reflects a rise in the
incidence of extrapulmonary disease and an early mortality and
reduced duration of infectiousness in those coinfected with HIV
and TB. The overall incidence of recently transmitted disease
rises as HIV prevalence increases even though there are fewer
secondary cases per infectious source. Because this effect is
caused by a ‘‘tradeoff’’ between increased incidence of disease

Fig. 1. Effect of various factors on mean cluster size (bold line) and the proportion of uniques isolates (hatched line) of M. tuberculosis during modeled
epidemics. BCG, bacillus Calmette–Guérin.
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and reduced infectiousness, a realistic assessment of the mag-
nitude of these effects must await more precise estimation of
these parameters. Fig. 2 A and B show the relationships between
rising HIV prevalence and the incidence of reactivation disease
and recently transmitted disease for several possible rates of
HIV-associated primary and reactivation disease. An important
corollary of this observation is that factors associated with HIV
may seem to be causally linked to small cluster size through
confounding.

Prevalence of Latent TB Infection. An increase in the prevalence of
latent TB infection in this model leads to an increase in the
incidence of active disease, with a rise in cases caused by
reactivation and exogenous reinfection and a decline in those
caused by primary disease (Fig. 1). Because the model assumes
that previous infection with TB affords some degree of immunity
to subsequent infection, an increase in the prevalence of latent
infection translates into a corresponding decrease in the number
of susceptibles available to be infected or reinfected. The effect
of this ‘‘herd immunity’’ is a reduction in the size of clusters and
in the proportion of clustered cases even though overall inci-
dence has not been curtailed. Fig. 3 A and B illustrates the
association between the prevalence of latent infection and the
ratio of infectious cases to the annual risk of infection and
indicates that an increase in the incidence of active disease may
occur at the same time as a decline in TB transmission. Because
the protective efficacy of previous TB infection for subsequent
reinfection is not known, the quantitative impact of latent
infection on cluster size cannot be determined. Nonetheless, this
analysis does suggest that cluster size may be constrained in high
burden areas even if the immunity conferred by previous disease
is small.

Demographics. The model predicts that the age structure of a
population can have a marked impact both on TB dynamics and
cluster distribution (Table 4, which is published as supporting
information on the PNAS web site). When the age structure of
a population is skewed toward the young, the incidence of

extrapulmonary disease increases, and transmission of the dis-
ease is reduced. Conversely, when older people make up a
greater proportion of the population, the mean number of
secondary infections produced by a single case will rise, because
these patients are more likely to have pulmonary disease. Thus,
the effect of raising the average age of a population in the
absence of other changes is to increase mean cluster sizes and the
proportion of clustered cases.

Despite these trends in mean cluster size with variation in
specific determinants, the model output gave a wide range of
cluster size both within and between simulations. The Monte
Carlo-based standard deviations of cluster size are corre-
spondingly large, ref lecting the fact that this model can
produce highly variable estimates across simulations for a
single set of parameters. This variation largely stemmed from
the underlying social structure incorporated into the model
and the random distribution of an individual social-mixing
factor that determined the number of contacts per case. When
this mixing factor was fixed, the variance in cluster size was
reduced substantially.

Discussion
This model identifies a number of factors that may have an effect
on the cluster size and distribution of M. tuberculosis isolates in
a specific community even under the ‘‘null’’ hypothesis that these
isolates are identical phenotypically. These factors include in-
terventions such as chemotherapy, vaccination, and chemopro-
phylaxis, HIV prevalence, the age structure of the population,
and the prevalence of latent TB infection. Not surprisingly, these
factors are those that have been shown to impact the disease
dynamics in numerous deterministic models of TB transmission
(39–44). Effecting a change in such parameters as the duration
of infectiousness, the transmission probability, and the rates of
progression to primary and reactivation disease alters the basic
reproductive rate (R0) as well as the dynamic behavior and

Fig. 2. The effect of increasing HIV prevalence on the incidence of cases
caused by reactivation (dotted line) and primary disease (solid line) (A) and on
the annual risk of infection (B). As HIV prevalence increases, the number of
cases of reactivation TB increases precipitously, whereas the numbers of cases
of infection and primary disease rise less steeply. Thus there are fewer cases of
infection and primary disease for each ‘‘source’’ case.

Fig. 3. The effect of increasing the prevalence of latent TB on the incidence
of cases caused by reactivation (dotted line) and primary disease (solid line) (A)
and on the annual risk of infection (B). As prevalence increases, more source
cases arise through reactivation. The falling number of susceptibles, however,
means that transmission declines and the number of cases of infection and
primary disease falls accordingly.
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consequently the distribution of clusters of TB. Similarly, the
finding that the expected number of new infections produced by
an infectious case is reduced when some members of the
population are immune to the disease is one of the most basic
tenets of infectious disease dynamics (47). The observation that
cluster size will be reduced in partially immune populations is
entirely consistent with the well known nonlinear dynamics of
communicable diseases. Despite the considerable recent focus
on the dynamics of TB transmission (39–44, 46), few studies have
explicitly extended these principles to understanding and inter-
preting data from molecular epidemiologic investigations of TB.
Here, the use of an individual-based approach to modeling TB
transmission allows us to generate the cluster distributions that
comprise the empirical data from such studies and to observe the
impact of transmission dynamics on the structure of this data
directly. The wide range of cluster sizes found within simulations
reflects variable levels of risk among different individuals as well
as the social structure and mixing included in the model. Much
recent analytical work has explored the impact of heterogeneous
mixing and infectivity on estimates of R0 for infectious diseases
(46, 48, 49); this work explores the implications of such heter-
ogeneity for the molecular epidemiology of TB.

Although the cluster distributions generated by this model
are not calibrated to represent realistic data sets, our results do
have several implications for the practical interpretation of
data from empirical studies. These are that (i) areas with high
prevalence of latent TB may have a relatively high strain
diversity because of the effect of partial herd immunity among
infected hosts, (ii) the success of control measures may not
always be ref lected by a decrease in the mean cluster size in a
community, and (iii) strain-specific characteristics associated
with host factors may seem to be associated with trends in
cluster size because of confounding of these characteristics by
the host risk factor.

Although most systematic surveys of M. tuberculosis isolates
have been conducted in low-prevalence communities, several
recent studies have reported an unexpectedly high degree of
genetic diversity in high-incidence communities in Africa. War-
ren et al. (50) hypothesized that epidemic areas would have
relatively few circulating strains but instead found many unique
isolates and small clusters among M. tuberculosis isolates sam-
pled from two high-incidence suburban communities in Cape-
town, South Africa. Yang et al. (51) reported a similarly high
level of strain diversity from Tanzania with 101 different strains
noted among 134 isolates sampled. These results contrast mark-
edly with the findings from low-incidence areas that have
reported higher levels of clustering than anticipated. Our model
predicts that, for a given basic reproductive rate, M. tuberculosis
isolates from high-prevalence areas will be more diverse than
isolates from low-prevalence areas. Because it is not clear how
much the basic reproductive rate for TB varies between com-
munities, this observation cannot be used to provide a quanti-
tative expectation of how mean cluster sizes will vary in popu-
lations with differing prevalences of latent infection. However, it
is consistent with the apparently paradoxical results observed in
high- and low-incidence areas.

The second prediction of this model, that successful control
measures will not always affect a reduction in mean cluster size,
also may help explain the frequently reported finding of large
clusters of cases in areas with low TB incidence. Numerous
recent studies have documented the unsuspected spread of M.
tuberculosis strains through diverse communities in low-
incidence areas in the U.S. and have called attention to the
inadequacy of standard contact-tracing techniques in identifying
potential transmission events (34–38). Many of these commu-
nities focus on targeted testing and treatment of latent TB
infection as a means of TB control (52). The impact of this
strategy can be difficult to assess, because it is not clear how
many of the potential cases averted would have gone on to
transmit TB. Nonetheless, it is clear that reducing the number of
newly reactivated cases will decrease incidence but may have
little impact on the size of those clusters that do arise, especially
if people in these clusters are not among those ‘‘targeted’’ for
testing.

Point iii concerns epidemiologic inference as it applies to
risk factors for clustering. In addition to identifying isolates
that may be especially transmissible, some molecular studies
have found that certain strains such as those that are isoniazid-
resistant are less frequently clustered than others (53, 54). This
finding has led to the inference that drug-resistant strains of
M. tuberculosis may be less fit than their drug-sensitive coun-
terparts and less likely to contribute to epidemic disease (55).
The model presented here implicates a number of host and
community-level factors as predictors of mean cluster size. In
particular, determinants of reduced host capacity to spread
infection such as HIV infection and young age directly reduce
cluster size in this model. Many other host factors that were not
addressed in this model may be associated with reduced
capacity for transmission. Most notably, social-mixing patterns
may be highly predictive of an individual’s adherence to
anti-TB therapy. If unmeasured confounders are risk factors
both for the acquisition of drug resistance in TB and a reduced
capacity to spread disease, drug-resistant strains will seem
to be less frequently clustered even when they are no less
transmissible than sensitive strains.

This study provides a first step in constructing individual-
based models that link infectious disease dynamics and molec-
ular epidemiologic approaches to studying strain diversity of
pathogens. Such models can be refined and extended to incor-
porate recent innovative research on the social networks that
facilitate TB transmission as well as a more specific approach to
the molecular markers currently in use. Although the develop-
ment of such models will require more computing capacity than
current personal computers can provide, we believe that the
elaboration of these methods will produce a powerful tool with
which to study the epidemiology of infectious diseases.
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