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Carnitine is indispensable for energy metabolism, since it enables

activated fatty acids to enter the mitochondria, where they are

broken down via β-oxidation. Carnitine is probably present in all

animal species, and in numerous micro-organisms and plants. In

mammals, carnitine homoeostasis is maintained by endogenous

synthesis, absorption from dietary sources and efficient tubular

reabsorption by the kidney. This review aims to cover the current

INTRODUCTION

Carnitine (-3-hydroxy-4-N,N,N-trimethylaminobutyrate) is an

essential metabolite, which has a number of indispensable roles

Figure 1 Function of carnitine in the transport of mitochondrial long-chain fatty acid oxidation and regulation of the intramitochondrial acyl-CoA/CoA ratio

Cytosolic long-chain fatty acids, which are present as CoA esters, are trans-esterified to L-carnitine in a reaction catalysed by carnitine palmitoyltransferase I (CPT I) at the mitochondrial outer

membrane. In this reaction, the acyl moiety of the long-chain fatty acids is transferred from CoA to the hydroxyl group of carnitine. The resulting long-chain acylcarnitine esters are transported

over the inner mitochondrial membrane via a specific carrier, carnitine-acylcarnitine translocase (CACT). At the matrix side of the mitochondrial membrane, the long-chain fatty acids are trans-

esterified to intramitochondrial CoA, a reaction catalysed by carnitine palmitoyltransferase II (CPT II). The released carnitine can then leave the mitochondrion via CACT for another round of transport

[1]. In the mitochondrial matrix, the enzyme carnitine acetyltransferase (CAT) is able to reconvert short- and medium-chain acyl-CoAs into acylcarnitines using intramitochondrial carnitine. These

acylcarnitines can then leave the mitochondria via CACT. Through this mechanism of reversible acylation, carnitine is able to modulate the intracellular concentrations of free CoA and acyl-CoA.

Abbreviations used: ALDH9, aldehyde dehydrogenase 9; BBD, γ-butyrobetaine dioxygenase; CDSP, primary systemic carnitine deficiency ; (H)TML,
(3-hydroxy-)N6-trimethyl-lysine ; HTMLA, HTML aldolase ; JVS, juvenile steatosis ; OCTN2, organic cation transporter 2 ; PPARα, peroxisome-proliferator-
activated receptor α ; SHMT, serine hydroxymethyltransferase; TMABA, 4-N-trimethylaminobutyraldehyde; TMABA-DH, TMABA dehydrogenase; TMLD,
TML dioxygenase.
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knowledge of the enzymological, molecular, metabolic and

regulatory aspects of mammalian carnitine biosynthesis, with an

emphasis on the human and rat.

Key words: butyrobetaine, fatty acid metabolism, hydroxy-

trimethyl-lysine, trimethyl-lysine.

in intermediary metabolism. First, carnitine has an important

role in the transport of activated long-chain fatty acids from the

cytosol to the mitochondrial matrix, where β-oxidation takes

place (Figure 1) [1,2]. Secondly, carnitine is involved in the
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Figure 2 The carnitine biosynthesis pathway

(A) The chemical structures of the five carnitine biosynthesis metabolites. (B) Carnitine biosynthesis from TML. After release of TML by lysosomal protein degradation, this compound is hydroxylated

by TMLD, after which the resulting HTML is cleaved by a specific aldolase, which uses pyridoxal 5«-phosphate (PLP) as a cofactor, into TMABA and glycine. Subsequently, TMABA is

oxidized by TMABA-DH to form 4-N-trimethylaminobutyrate (butyrobetaine). In the last step, butyrobetaine is hydroxylated by BBD, yielding L-carnitine.

transfer of the products of peroxisomal β-oxidation, including

acetyl-CoA, to the mitochondria for oxidation to CO
#
and H

#
O

in the Krebs cycle [3,4]. Other functions of carnitine include

modulation of the acyl-CoA}CoA ratio [1,5], storage of energy

as acetylcarnitine [6,5] and the modulation of toxic effects of

poorly metabolized acyl groups by excreting them as carnitine

esters [7,8]. Carnitine is present in most, if not all, animal species,

and in several micro-organisms and plants [9–12]. Animal tissues

contain relatively high amounts of carnitine, varying between 0.2

and 6 µmol[g−", with the highest concentrations in heart and

skeletal muscle [6]. Although animals obtain carnitine primarily

from the diet,mostmammals are capable of synthesizing carnitine

endogenously.

Carnitine is synthesized ultimately from the amino acids lysine

and methionine. Lysine provides the carbon backbone of

carnitine [13,14] and the 4-N-methyl groups originate from

methionine [15]. In mammals, certain proteins contain N'-

trimethyl-lysine (TML) residues [16]. N-methylation of these

lysine residues occurs as a post-translational event in proteins

such as calmodulin, myosin, actin, cytochrome c and histones

[17,18]. This reaction is catalysed by specific methyltransfer-

ases, which use S-adenosylmethionine as a methyl donor [16].

Lysosomal hydrolysis of these proteins results in the release

of TML, which is the first metabolite of carnitine biosynthesis

[19,20]. TML is first hydroxylated on the 3-position by TML

dioxygenase (TMLD; EC 1.14.11.8) to yield 3-hydroxy-

TML (HTML). Aldolytic cleavage of HTML yields 4-tri-

methylaminobutyraldehyde (TMABA) and glycine, a reaction

catalysed by HTML aldolase (HTMLA; EC 4.1.2.‘X’).

Dehydrogenation of TMABA by TMABA dehydrogenase

(TMABA-DH; EC 1.2.1.47) results in the formation of 4-N-

trimethylaminobutyrate (butyrobetaine). In the last step, butyro-

betaine is hydroxylated on the 3-position by γ-butyrobetaine

dioxygenase (BBD; EC 1.14.11.1) to yield carnitine. The

chemical structure of the intermediates and the enzymes of

carnitine biosynthesis are shown in Figures 2(A) and 2(B)

respectively.

Because an up-to-date review on carnitine biosynthesis does

not exist, while in the past few years the knowledge concerning

this pathway has expanded considerably, a review on this topic

is required and warranted. The present review aims to describe

the current knowledge on carnitine biosynthesis at the enzymo-

logical, molecular and metabolic level. First, the individual

enzymes of the carnitine-biosynthesis pathway will be discussed,

including the recent developments concerning the identification

of the genes involved. Secondly, we will discuss the various

metabolites of the carnitine-biosynthesis pathway, with an em-

phasis on their occurrence in biological fluids and on the means

employed to determine their concentration. Thirdly, an overview

of carnitine biosynthesis will be given for the human and rat.

Finally, the transport of carnitine and its precursors will be

discussed.
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ENZYMES OF CARNITINE BIOSYNTHESIS

Several of the carnitine-biosynthesis enzymes have been isolated

and characterized, although identification of the encoding genes

has been realized only relatively recently [21–24]. The enzymes

involved in carnitine biosynthesis, their cofactors and subcellular

localization are depicted in Figure 2(B), and discussed below.

TMLD

Hulse and co-workers [25] were the first to demonstrate that

rat liver mitochondria are capable of hydroxylating TML to

produce HTML. The enzyme responsible for this conversion was

shown to be a non-haem ferrous-iron dioxygenase, which requires

2-oxoglutarate, Fe#+ and molecular oxygen as cofactors [25–28].

In this class of enzymes, the hydroxylation of the substrate is

linked to the oxidative decarboxylation of 2-oxoglutarate to

succinate and CO
#
. Molecular oxygen reacts at the active site of

the enzyme to form an oxo-ferryl intermediate (Fe%+?O), and

this iron-bound oxygen atom is used to hydroxylate the substrate.

The other oxygen atom is incorporated into 2-oxoglutarate,

resulting in the formation of succinate and the release of CO
#

[29]. TMLD requires the presence of ascorbate (vitamin C) for

enzymic activity, presumably to maintain the iron in the ferrous

state. Reducing agents other than ascorbate are also effective

(dithiothreitol, 3-mercaptoethanol), but ascorbate works best in

each of the reactions [25,30].

In most experiments, TMLD activity is measured by using

radiolabelled TML and counting the radioactivity of the product

HTML after its isolation from the incubation medium by ion-

exchange chromatography [25,28,30–33]. An alternative assay

was reported by Davis [24], who used unlabelled TML and de-

tected the product (HTML), after ion-exchange chromatography,

by reversed-phase HPLC using pre-column derivative formation

with o-phthalaldehyde. A new method was developed recently to

measure the concentration of the carnitine-biosynthesis meta-

bolites in urine using tandem MS, and this was used to measure

TMLD activity in tissue homogenates.

In both humans and rats, TMLD activity is present in liver,

skeletal muscle, heart and brain, but the highest activity is found

in the kidney [28,31]. TMLD was purified previously from

bovine kidney by Henderson and co-workers [30,33], who re-

ported that the pure enzyme was very unstable, losing all activity

overnight. TMLD has been purified recently from rat kidney, and

it was found that the presence of 2 mM ascorbate, 5 mM

dithiothreitol and 100 g[l−" glycerol was essential for preserving

the enzymic activity during the later purification steps and

subsequent storage at ®80 °C [24]. TMLD was characterized

kinetically, and gel-filtration and blue native PAGE analysis

showed that the native enzyme is a homodimer with a mass of

approx. 87 kDa [24]. The sequence of two internal peptides of the

purified enzyme was determined by quadruple time-of-flight

MS. This sequence information, in combination with the data

available in the expressed sequence tag database, led to the

identification of a rat cDNA of 1218 bp encoding a polypep-

tide of 405 amino acids with a calculated molecular mass of

47.5 kDa. Using the rat sequence, the authors also identified

the homologous cDNAs from human and mouse. Heterologous

expression of both the rat and human cDNAs in COS cells

confirmed that they encode TMLD [24]. The human TMLD

gene is localized at Xq28.

Subcellular localization experiments indicated that the enzyme

is associated predominantly with mitochondria [25,27] in contrast

with the other three carnitine-biosynthetic enzymes, which are

cytosolic. Recently, the mitochondrial localization of TMLD

was confirmed by experiments using Nycodenz density-gradient

analysis to resolve the different subcellular organelles [24]. The

fact that TMLD is localized in mitochondria is remarkable, since

the other three enzymes of the carnitine biosynthetic pathway are

localized in the cytosol (Figure 2B). The submitochondrial

localization of TMLD will have implications for the substrate-

flow and regulation of carnitine biosynthesis. Indeed, if TMLD

is localized in the mitochondrial matrix, the existence of a

transport system to shuttle its substrate (TML) and product

(HTML) over the inner mitochondrial membrane would be

required. In contrast, if TMLD is present in either the inner

membrane space or the outer mitochondrial membrane, no

transport system would be needed since the outer mitochondrial

membrane is permeable for small molecules. This question needs

to be resolved in the future.

HTMLA

Very little is known about HTMLA, which catalyses the aldolytic

cleavage of HTML into TMABA and glycine. Rebouche and

Engel [31] reported that, in human tissues, HTMLA activity is

found almost exclusively (" 90%) in the soluble fraction. The

highest activity was found in liver, but activity varied greatly,

ranging from 8 to 140 pmol[min−"[mg−" protein. HTMLA might

be identical to serine hydroxymethyltransferase (SHMT; EC

2.1.2.1), since it has been shown that SHMT purified from rabbit

liver acts upon HTML, yielding TMABA and glycine [30,33].

SHMT catalyses the tetrahydrofolate-dependent interconversion

of serine and glycine, a reaction that generates one-carbon units

for methionine, thymidylate and purine biosynthesis [34]. SHMT

also catalyses the aldol cleavage of other β-hydroxyamino acids

in the absence of tetrahydrofolate [35], including HTML. Two

isoforms of SHMT are present in eukaryotic cells : one localized

in the cytoplasm and one localized in mitochondria. In humans,

the gene encoding the cytosolic SHMT is located on chromosome

17p11.2, and the gene encoding the mitochondrial isoenzyme

is on chromosome 12q13.2 [36]. The human cytosolic SHMT is

expressed predominantly in the kidney, liver and skeletal muscle,

whereas mitochondrial SHMT is expressed ubiquitously [34]. If

HTMLA is identical with one of the two SHMTs, the cytosolic

isoenzyme is the most likely candidate, since cytosolic SHMT is

expressed predominantly in tissues reported to contain HTMLA

activity and HTMLA is localized in the cytoplasm [31]. Like

many aldolases, SHMT uses pyridoxal 5«-phosphate, a derivative

of pyridoxine (vitamin B
'
), as a cofactor. The involvement of a

pyridoxal 5«-phosphate-requiring enzyme in carnitine bio-

synthesis is supported by the observation that synthesis of

butyrobetaine and carnitine from protein-bound TML is in-

hibited by 1-amino--proline, an antagonist of vitamin B
'
. This

compound restricted carnitine biosynthesis by as much as

60–80%, and leads to the accumulation of HTML [37]. Fur-

thermore, rats maintained on a vitamin B
'
-deficient diet showed

a significant decrease in carnitine levels in extrahepatic tissues.

Moreover, when these rats were fasted for 3 days, liver carnitine

levels were significantly lower, as compared with fasted control

rats [38]. Repletion of vitamin B
'
resulted in normalization of the

carnitine levels in all tissues, supporting further the requirement

of this vitamin in carnitine biosynthesis [38]. Whether HTMLA

is identical with SHMT, however, remains to be established.

TMABA-DH

TMABA-DH, which catalyses the dehydrogenation of 4-N-

trimethylaminobutyraldehyde to butyrobetaine, was first isolated

by Hulse and Henderson [39] from the cytoplasmic fraction of

bovine liver. No activity was detected in either the mitochondrial

or microsomal fractions. The same group also reported puri-
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fication of this enzyme from rat liver [40]. TMABA-DH has an

absolute requirement for NAD+, and its activity is easily

measured spectrophotometrically or fluorimetrically by following

the appearance of NADH [39]. In human tissues, the rate of

TMABA dehydrogenation is highest in liver, substantial in

kidney, but low in brain, heart and muscle [31]. The purification

and characterization of TMABA-DH from rat liver cytosol and

the identification of the corresponding rat cDNA was reported

recently [23]. With this information, the homologous mouse and

human cDNAs were also identified. Upon expression of the rat

cDNA in Escherichia coli, high levels of TMABA-DH activity

could be measured in cell lysates, which confirmed its identity as

TMABA-DH. The translated coding sequence of rat TMABA-

DH cDNA is highly homologous with that of the previously

identified human aldehyde dehydrogenase 9 (ALDH9, EC

1.2.1.19) enzyme, which is mapped to 1q22–23 (gene name:

ALDH9A1) [41–43]. This cytosolic ALDH has been reported to

act on substrates that resemble TMABA, including 4-amino-

butyraldehyde and 2-trimethylaminoethanal (betaine aldehyde).

The resulting products of ALDH9, 4-aminobutyrate [the neuro-

transmitter γ-aminobutyric acid (‘GABA’)] and betaine, have

been implicated in various cellular functions [42–46]. ALDH9 is

predominantly expressed in the liver, kidney, heart and muscle

[43,46], which are tissues that also contain high levels of TMABA-

DH activity [31]. Heterologous expression of ALDH9 in E. coli

showed that the recombinant protein had the highest activity

with TMABA as substrate. In addition, comparison of the

kinetic properties for a variety of substrates of rat TMABA-DH

with heterologously expressed human ALDH9 showed that these

enzymes have highly similar substrate specificities. Therefore,

ALDH9 is most probably the human TMABA-DH [23].

BBD

BBD catalyses the stereospecific hydroxylation of butyrobetaine

to -carnitine [47]. Lindstedt and colleagues [48–50] were the

first to partially purify a BBD from Pseudomonas sp. AK 1, a

bacterial strain that can grow on butyrobetaine as the sole

source of carbon and nitrogen. They showed that BBD activity

was stimulated considerably by 2-oxoglutarate, and that the

enzyme requires molecular oxygen, Fe#+ and ascorbate for

activity ; furthermore, this activity was also present in rat liver

homogenates. Experiments using an atmosphere of ")O
#
showed

that the enzyme incorporates one atom of molecular oxygen into

carnitine and the other into succinate, which demonstrated that

BBD, like TMLD, is a dioxygenase [51]. BBD has been purified

from various sources, including rat liver [52,53], calf liver [54],

human kidney [55] and the bacterium Pseudomonas [56]. The

complete primary structure of the Pseudomonas sp. AK 1 BBD

was determined by Edman degradation [57]. Both the

Pseudomonas sp. AK 1 and bovine enzymes are homodimers of

two 43 kDa subunits [56,54]. Lindstedt and Nordin [58] showed

by isoelectric focusing and column chromatography that BBD

from the human kidney, rat and calf liver are present in three

isoforms. However, these results could not be reproduced with

purified rat liver BBD, which was eluted as a single peak from a

chromatofocusing column used for purification [53]. The sig-

nificance of the observations of Lindstedt and Nordin remains to

be established.

In all mammals studied, BBD is localized in the cytosol

[50,52,53,55,59], although one group reported the presence of

BBD activity in peroxisomes, which could be stimulated by

clofibrate, a peroxisome proliferator [60]. Since these results have

never been reproduced, additional experiments are needed to

resolve whether BBD is also present in peroxisomes.

Simkhovich and co-workers [61] discovered that 3-(2,2,2-

trimethylhydrazinium)propionate (mildronate), which has

cardioprotective properties during ischaemia, is a competitive

inhibitor of BBD. The cardioprotective effect is proposed to be

based on a lowering of the carnitine levels in the heart, which

results in inhibition of fatty acid oxidation, decreased levels of

harmful long-chain acylcarnitines and conservation of ATP

[62,63]. It has been shown recently that the reduction of tissue

carnitine levels is not based solely on BBD inhibition, since

mildronate also inhibits tubular reabsorption of carnitine in the

kidney, which results in carnitine loss through urinary excretion

[64–66].

BBD activity is usually measured radiochemically using

labelled butyrobetaine [67]. The enzyme activity can also be

determined by measuring the butyrobetaine-dependent release of

["%C]CO
#

that is produced from the decarboxylation of 2-oxo-

[1-"%C]glutarate to succinate. This method, however, requires

the measurement of butyrobetaine-independent activity, since the

mitochondrial 2-oxoglutarate dehydrogenase complex also pro-

duces CO
#
from 2-oxoglutarate. Alternatively, BBD activity can

be measured using a two-step procedure in which carnitine

produced from unlabelled butyrobetaine is measured in a radio-

isotopic assay [68,21]. The disadvantage of this assay is that,

when tissue homogenates are used, the endogenous carnitine

content also needs to be determined.

In mammals, BBD is expressed differentially, and its activity

has been found in liver, kidney, brain and possibly in testis and

epididymis, but not in other tissues. Butyrobetaine is hydroxy-

lated readily to carnitine in kidney extracts from human, cat,

cow, hamster, rabbit and Rhesus monkey sources, and exceeds

or equals the BBD activity in the corresponding liver extracts. In

contrast, BBD activity is not present, or only at very low levels,

in the kidneys of Cebus monkeys, sheep, dogs, guinea pigs, mice

and rats [55,59,69,70], in which BBD activity is predominant

in the liver. The reason for this species-dependent difference in

kidney}liver expression of BBD is not clear. There does not

appear to be any evolutionary pattern, since even very closely

related species, like the Rhesus and Cebus monkeys, already

exhibit a different pattern of expression. Erfle [59] reported BBD

activity in sheep muscle. However, this could not be reproduced

by Cederblad and co-workers [71]. In contrast with other

mammals, the human brain has been shown to contain some

BBD activity [31]. The human BBD cDNA was recently identified

and shown to contain an open reading frame of 1161 bp, which

encodes a protein of 44.7 kDa (the corresponding BBOX1 gene

is localized on 11q14–15). Using the BBD cDNA, it was

demonstrated by Northern blot analysis that BBD is expressed

in kidney (at a high level), liver (at a moderate level) and also in

brain (to a very low level) [21].

There is some evidence to suggest that BBD activity is also

present in rat testis and epididymis [72–76]. This was supported

by data from Galland and co-workers [22], who identified the rat

BBD cDNA and showed that the BBD mRNA is present in liver,

testis and epididymis. The size of the mRNA in testis and

epididymis, however, is significantly larger than in liver (1.9 kb)

and differs from testis (3.5 kb) and epididymis (4.5 kb). These

either represent alternatively spliced BBD mRNAs or non-

specific cross-hybridizations. Other reports, in which radioactive

butyrobetaine or carnitine was administered to rats, showed that

the cauda epididymis has a high capacity to take up carnitine,

but not to synthesize it from butyrobetaine [75,77]. The capacity

of (rat) testis}epididymis to synthesize carnitine thus remains

controversial.

Galland and co-workers [22] also investigated the expression

of BBD in the liver during development. The BBD mRNA
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Figure 3 Sequence comparison of human TMLD and BBD with homologues from other organisms

For sequences without a confirmed function, the GenBank2 accession number, preceded by an abbreviation of the organism of origin, is used as sequence name. DM, D. melanogaster ; CE, C.
elegans. The Pseudomonas sp. BBD is derived from strain AK 1 and has GenBank2 accession number P80193. Highly conserved residues (black boxes) and residues conserved in more than

50% of the sequences (dark grey boxes) are highlighted.

appeared after weaning, and reached maximal values at the adult

stage. These data are in agreement with those of Hahn [78], who

showed that BBD activity in liver homogenates increased from

low values in the fetus to adult values on the eighth day after

birth. In human liver, BBD activity is also low at birth, and

increases to adult values during puberty. However, kidney BBD

activity is already present at birth [79].

Homologues in other organisms

Similarity searches in the increasing numbers of complete genome

sequences available have shown that homologues of carnitine

biosynthesis enzymes also exist in organisms other than humans,

rats and mice. A comparison of the sequences of human TMLD

and human BBD with each other shows that these enzymes share

considerable similarity and, since no other homologous proteins

are present in the current assembly of the human genome, they

appear to form a separate family of 2-oxoglutarate-dependent,

non-haem ferrous iron dioxygenases. This is supported by the

fact that, when either of the two sequences is used as query to

search the non-redundant database using the BLASTp-algor-

ithm, only two to four homologues were found per organism,

which include Caenorhabditis elegans and Drosophila melano-

gaster. An alignment of a selection of BBD}TMLD homologues

found in different organisms is shown in Figure 3.

A BLASTp search in the C. elegans Wormpep database using

either human BBD or human TMLD as the query yields two

homologues, CAA85412 and CAA91416 (both corresponding

genes are localized on chromosome II). The protein CAA91416

has higher homology with TMLD, whereas CAA85412 is more

homologous with BBD.

When the same search was performed in the D. melanogaster

genome, four homologues were found. Two of these proteins,

AAF48381 and AAF45580, both contain a putative mito-

chondrial targeting sequence (MitoprotII ; [80]) and their cor-

responding genes are both present on the X-chromosome. The

genes of the two other D. melanogaster homologues, AAF58383

and AAF55763, are localized on chromosomes 2R and chromo-

some 3R respectively, and the deduced proteins do not have a

putative mitochondrial targeting sequence. If, in D. melanogaster,

TMLD also is a mitochondrial protein, the two former proteins

are the most likely candidates to code for TMLD, whereas the
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latter two proteins could represent BBD. The presence of

TMLD}BBD homologues in D. melanogaster and C. elegans

suggest that both organisms are capable of synthesizing carnitine.

It remains to be established, however, whether these genes indeed

code for enzymes of carnitine biosynthesis, and what the function

of carnitine is in these organisms. Since these organisms are

relatively easy to manipulate genetically, disruption of these

homologous genes is possible, and is likely to provide further

insight into their functions.

METABOLITES OF CARNITINE BIOSYNTHESIS

Several methods have been described to measure the concen-

tration of the carnitine biosynthesis metabolites in biological

fluids and tissues. These methods, and the concentration of the

metabolites in plasma and urine, are described below.

TML

Kakimoto and Akazawa [81] were the first to identify TML in

human urine. They isolated the basic amino acid fraction by ion-

exchange chromatography, and analysed this by standard amino

acid analysis. In general, all methods to assay TML in either

plasma, urine or tissues samples use the same sample work-up.

After protein removal from the sample, TML is purified by ion-

exchange chromatography followed by (ion-pair) HPLC analysis

with pre- or post-column derivative formation and fluorimetric

detection [82–86]. Agents used for the derivative formation of

TML include o-phthalaldehyde [83–85], phenylisothiocyanate

[86] and 1-fluoro-2,4-dinitrobenzene [82]. More recently, a

method to measure TML in plasma by tandem MS has been

described [87]. This method uses two subsequent derivative-

formation steps, propylation and acetylation, to circumvent the

interference of homoarginine, followed by tandem MS analysis.

In our laboratory, we recently developed a fast and easy method

to determine the concentrations of the metabolites of the carnitine

biosynthesis in urine. Without prior purification, the urine sample

is derivatized with methyl chloroformate, followed by separation

of the analytes by reversed-phase ion-pair HPLC using hepta-

fluorobutyric acid as an ion-pairing agent, and detection by

electrospray tandem MS. With this method, TML, HTML,

butyrobetaine and carnitine can be quantified in a single analysis

(unpublished results). This new method is highly reproducible,

and has a detection limit of 0.25 pmol for each compound. This

method will be adapted to measure the carnitine-biosynthesis

metabolites in plasma and cells}tissues.

The concentration of TML in plasma is relatively constant in

both human [85,87,88] and rat [83,89], ranging from 0.2 to

1.3 µM. Plasma levels of TML have been shown to correlate with

body mass [88]. In man, urinary excretion of TML is proportional

to that of creatinine, and TML is not reabsorbed by the kidney

[90,91]. In contrast, the rat is capable of tubular reabsorption of

TML [89,92]. Urinary TML concentrations in man have been

reported to range from 2 to 8 µmol[mmol of creatinine−"

[81,85,90,93,94].

HTML

The presence of HTML in plasma has never been reported,

and its urinary excretion has only very recently been investi-

gated in our laboratory. With a urinary excretion of 0.45³
0.15 µmol[mmol of creatinine−", HTML shows a profile similar

to that of TML, which is proportional to creatinine excretion,

and this suggests that HTML, like TML, is not reabsorbed

by the human kidney (F. M. Vaz, B. Melegh, J. Bene, D. Cuebas,

D. A. Gage, A. Bootsma, P. Vreken, A. H. van Gennip, L. L.

Bieber and R. J. A. Wanders, unpublished work).

Butyrobetaine

Previously, the concentration of butyrobetaine in plasma and

tissues was determined by isolating butyrobetaine via HPLC or

ion-exchange chromatography, and using BBD to convert it into

carnitine, which could be quantified readily by established

procedures [95,96]. Others have reported methods where

butyrobetaine is derivatized with 4«-bromophenacyl trifluoro-

methanesulphonate, followed by HPLC analysis with UV de-

tection [97,98]. These methods, however, are rather labour-

intensive and require considerable amounts of sample. More

recently, Sawada and colleagues [87,99] have described an assay

based on tandem MS to measure butyrobetaine in plasma. The

use of this technique makes prior purification of butyrobetaine

unnecessary. In addition, this method requires a small amount

of sample (20 µl of plasma; [87,99]), and is considerably

more sensitive than previous methods. No assay has been

described to measure the tissue content of butyrobetaine by

tandem MS. In humans, the level of butyrobetaine in urine is low

(E 0.3 µmol[mmol creatinine−" ; F. M. Vaz, B. Melegh, J. Bene,

D. Cuebas, D. A. Gage, A. Bootsma, P. Vreken, A. H. van

Gennip, L. L. Bieber and R. J. A. Wanders, unpublished work)

comparedwith the concentrations in plasma (4.8 µM[96] ; 1.8 µM

[87,99]). This can be explained by the high activity of BBD in

human kidney, which converts most of the butyrobetaine into

carnitine. Furthermore, butyrobetaine is reabsorbed efficiently

by the renal tubules, which lowers further the urinary excretion

of butyrobetaine.

Carnitine

Numerous methods have been developed to determine the

carnitine concentration in biological fluids and tissues. Since the

first assay for carnitine using Tenebrio molitor larvae, several

(more convenient) assays have been published using enzymic and

radiochemical methods [100]. A method which has been used

extensively is based on the conversion of carnitine into

["%C]acetylcarnitine by carnitine acetyltransferase (‘CAT’),

using ["%C]acetyl-CoA as substrate [71]. At present, the most

common method to determine (acyl)carnitine concentrations in

biological fluids employs tandem MS [101,102]. This procedure

is fast, sensitive and requires a small amount of sample

(! 100 µl).

The concentration of carnitine in plasma from both humans

and rats is age- and sex-dependent. In humans, the plasma

carnitine concentration increases during the first year of life

(from E 15 to E 40 µM), and remains the same for both sexes

until puberty [103–107]. From puberty to adulthood, plasma

carnitine concentrations in males increase and stabilize at a level

that is significantly higher than those in females (50 compared

with 40 µM) [104,108,109]. This suggests that sex hormones have

a role in the regulation of carnitine plasma concentrations

[104,108]. The difference in the rat is even more pronounced, in

which the adult male has a plasma carnitine concentration that

is more than twofold higher as compared with females (50 versus

20 µM).

Like butyrobetaine, carnitine is reabsorbed efficiently by the

kidney. However, urinary carnitine excretion is largely dependent

on the diet, and the kidney has been shown to adapt to a higher

carnitine intake by reducing the efficiency of carnitine re-

absorption [92,110]. This results in a variable urinary carnitine

excretion, with values of 15³12 µmol[mmol of creatinine−"

[79,111]. Like the plasma carnitine concentration, urinary ex-
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cretion in the rat has also been shown to be sex- and age-

dependent. Male rats excrete less carnitine than female rats,

which also could account for the different plasma carnitine

concentrations between sexes [103].

CARNITINE BIOSYNTHESIS IN THE RAT

Sites of carnitine biosynthesis

Most of the research on carnitine biosynthesis has been performed

in the rat. The primary site of carnitine biosynthesis in this

animal is the liver, since this is the only tissue which contains

BBD activity. Although testis has been reported to have a limited

capability to convert butyrobetaine into carnitine, it remains

unclear whether BBD activity is present in the testis [22,72–76].

Even if testis is capable of carnitine synthesis, the contribution to

total carnitine synthesis will be small, which is supported by the

fact that when the liver is excluded from the circulation, no

conversion of labelled butyrobetaine into carnitine is observed

[112].

Experiments by Tanphaichitr and Broquist [74] led to the

assumption that all rat tissues produce butyrobetaine from

TML, after which butyrobetaine is transported to the liver for

conversion into carnitine. Subsequently, Carter and Frenkel

[113] showed that, in normal rats, [methyl-$H]TML administered

intravenously rapidly (15–60 min) accumulated in the kidney,

and was converted into butyrobetaine and HTML. After longer

time periods (60–240 min), labelled carnitine appeared in the

liver, while the hepatic levels of radiolabelled TML levels

remained low. Bilateral nephrectomy resulted in a marked

decrease in the incorporation of label into the liver, showing that

initial conversion of TML into butyrobetaine occurs pre-

dominantly in the kidney and that, after transport to the liver,

butyrobetaine is converted into carnitine [113]. These experiments

also suggested that the liver has a low capacity to take up TML

from the circulation, in contrast with the kidney, which appears

to act as a scavenger of TML. The results obtained by Carter

and Frenkel were confirmed by subsequent vascular perfusion

experiments with the liver, kidney and small intestine [114]. Both

the small intestine and kidney were capable of absorbing TML

and HTML, and converted both compounds into butyrobetaine,

but not into carnitine. TML and HTML were not taken up

readily by the liver. In contrast, TMABA and butyrobetaine

were absorbed rapidly by the liver and converted into carnitine

[114]. After synthesis, carnitine is released into the circulation by

the liver, primarily as acetylcarnitine [115,116], and imported

into tissues.

In all the experiments described above, exogenous TML was

used, which was introduced via the circulation. Circulatory TML

is metabolized primarily by the kidney [113,114,117]. Normally,

TML is released from proteins intracellularly within lysosomes

and converted into butyrobetaine in the tissue of origin. From

experiments in which N'-[methyl-"%C]TML-labelled asialofetuin

(a glycoprotein that is rapidly taken up into the liver cells and

degraded in lysosomes) was injected intravenously into rats, it

was shown that the labelled TML residues of this protein were

indeed efficiently (" 56%) converted into carnitine [19,20].

However, with another labelled protein, agalacto-orosomucoid,

only 18% of the radioactivity was converted into carnitine and

70% of the radioactivity was released into the medium as TML

[20]. Therefore, Rebouche [118] suggested that part of the

intracellularly generated TML is converted into butyrobetaine in

the tissue of origin, and the rest is released into the circulation.

The kidney would then act as a scavenger of circulating TML,

since this organ (at least in the rat) actively reabsorbs TML and

has a high capacity to convert it into butyrobetaine.

Regulation of carnitine biosynthesis

Administration of butyrobetaine or TML to rats resulted in

markedly increased urinary carnitine excretion (65- and 100-fold

respectively), aswell as increased levels of tissue carnitine [92,119].

This suggests that hydroxylation of either butyrobetaine or TML

is not rate-limiting for carnitine biosynthesis. This observation

led Rebouche and co-workers [92] and Davis and Hoppel [89] to

propose that the availability of TML, which is determined by the

extent of peptide-linked lysine methylation and the rate of

protein turnover, limits the rate of carnitine biosynthesis. Liver

and muscle together produce approx. 2 µmol of TML in 24 h

from protein breakdown [118]. The carnitine produced by an

adult rat per day has been estimated to be approx. 3 µmol [108].

Since liver and muscle together account for about one-seventh of

whole-body protein turnover, total protein turnover provides

sufficient substrate for carnitine biosynthesis ([118], and refer-

ences therein).

Experiments in which carnitine and its precursors were

administered to rats suggested that the metabolites of carnitine

biosynthesis regulate the activity of the biosynthetic enzymes to

some extent. Hepatic BBD activity in rats fed on a 1% carnitine-

supplemented diet was reduced significantly (37%) when com-

pared with the activity in livers of rats fed on a non-supplemented

diet. In contrast, in rats fed 1% (but not 0.1%) butyrobetaine,

the specific activity of BBD was increased by 57%. Renal

TMLD specific activity was unaffected by both carnitine and

butyrobetaine [119]. In the normal diet, the carnitine

and butyrobetaine content is much lower, and it is therefore

probable that, under physiological conditions, feed-back in-

hibition by carnitine and}or stimulation of BBD activity by

butyrobetaine is not an important regulatory mechanism of

carnitine biosynthesis. The high levels of carnitine synthesis from

exogenous carnitine precursors suggest that the enzymic capacity

to synthesize carnitine from TML and butyrobetaine is much

greater than is usually utilized. This is in agreement with the view

that only the availability of TML is rate-limiting for carnitine

biosynthesis.

By an unknown mechanism, long-term starvation of rats

causes a considerable increase in liver carnitine levels, which

parallels the ketogenic capacity of the liver [1,120,121]. During

fasting, urinary levels of TML fall to 2–6% of the fed values

[89,122]. Urinary excretion of carnitine and butyrobetaine is also

decreased upon fasting to 13% and 33% of the levels in fed

animals respectively [122]. The conservation of carnitine pre-

cursors could lead to enhanced carnitine biosynthesis, which

would explain the higher levels of carnitine in liver. However,

this increase might also result from redistribution of carnitine

from tissues to the liver. Further studies are needed to understand

this phenomenon.

Paul and co-workers [123] showed that clofibrate, a peroxi-

some proliferator and ligand for the nuclear receptor peroxisome-

proliferator-activated receptor α (PPARα), greatly increased

liver carnitine and acylcarnitine concentrations (by 6- and 5-fold

respectively). Carnitine and acylcarnitine levels in skeletal muscle,

heart, kidney and plasma did not change significantly. The

authors clearly showed that these increases were a result of

enhanced hepatic carnitine biosynthesis, and not of redistribution

of carnitine among tissues or of a decrease in urinary excretion

[123]. Clofibrate treatment did increase urinary TML levels and,

since clofibrate has been shown to increase protein turnover

[124], it was suggested that the increased carnitine synthesis is

due to an increased availability of TML [123]. Recent studies

have shown that PPARα has a major role in orchestrating the

events during fasting by regulating the expression of genes
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involved in mitochondrial and peroxisomal fatty acid oxidation,

including carnitine palmitoyltransferase I (‘CPTI’) and peroxi-

somal acyl-CoA oxidase [125]. Since carnitine is required for

efficient fatty acid oxidation, it would appear to be beneficial

physiologically to increase carnitine biosynthesis during fasting.

However, it remains to be established whether PPARα is involved

in the regulation of carnitine biosynthesis.

During late gestation, liver carnitine levels increase consider-

ably (E 6-fold), most probably to provide a source of carnitine

to the newborn in order to allow it to obtain energy from fatty

acids of milk fat [126]. This high level of carnitine is maintained

until 3 days post partum, but then falls abruptly and returns to

normal values at day 9 [120]. Injection of labelled butyrobetaine

into the mother after delivery has shown that butyrobetaine is

completely converted into carnitine by the mother’s liver and

then reaches the pup via the milk [120]. The mechanism behind

this rapid rise and subsequent normalization of liver carnitine

levels remains unclear. Further study is necessary to determine

how carnitine biosynthesis and}or transport is regulated in this

situation.

Thyroxine, a thyroid hormone, has been reported to increase

liver carnitine levels too. In liver, both the carnitine concentration

and BBD activity were increased 2-fold in thyroxine-treated rats

[127]. Serum carnitine concentrations were increased moderately,

whereas levels in the heart, skeletal muscle and urine were not

affected. Effects of sex hormones [75], pituitary hormones [128],

insulin and glucagon [120,121,129] on carnitine levels have been

documented; their direct influence on carnitine biosynthesis,

however, has not been investigated.

CARNITINE BIOSYNTHESIS IN MAN

Major sources of carnitine in the human diet are meat, fish and

dairy products. Omnivorous humans generally ingest 2–12 µmol

of carnitine per day per kg of body weight [10]. This is more than

the carnitine produced endogenously, which has been estimated

Figure 4 Schematic representation of carnitine homoeostasis in man

Carnitine is synthesized in the kidney, liver and brain (not shown). Other tissues depend on active uptake of carnitine from the circulation (uptake is indicated by black arrows ; excretion by red

arrows). Protein degradation yields TML, which can be converted into butyrobetaine (BB) in every tissue. However, only the liver, kidney and brain are able to convert BB into carnitine because

BBD is expressed only in these tissues. BB is excreted from tissues which lack BBD, and transported via the circulation to liver and kidney, where it is converted into carnitine. The kidney efficiently

reabsorbs carnitine and butyrobetaine, thereby minimizing urinary loss of both compounds.

to be 1.2 µmol per day per kg of body weight [8,10]. In

omnivorous humans, approx. 75% of body carnitine sources

come from the diet and 25% comes from de no�o biosynthesis

[130]. Since carnitine is present primarily in foods of animal

origin, strict vegetarians obtain very little carnitine from their

diet (! 0.1 µmol per day per kg of body weight). Therefore, strict

vegetarians obtain more than 90% of their carnitine through

biosynthesis [10]. Plasma carnitine levels of strict vegetarians and

lacto-ovo-vegetarians have been shown to be significantly lower

than in normal omnivorous adults [131,132]. This difference,

however, is probably not of any clinical significance.

Tissue distribution of carnitine-biosynthetic enzymes

The tissue distribution of carnitine-biosynthetic enzymes in

humans has been investigated by Rebouche and Engel [31].

TMLD activity is highest in the kidney, but also present in the

liver, heart, muscle and brain. HTMLA activity is found pre-

dominantly in the liver. In the other investigated tissues, the

HTMLA activity is low. The rate of TMABA oxidation is

greatest in the liver, with substantial activity also found in the

kidney, but is low in brain, heart and muscle. These results show

that all the investigated tissues contain the enzymes necessary to

convert TML into butyrobetaine. However, only the kidney,

liver and brain are capable of converting butyrobetaine into

carnitine [31]. A schematic representation of carnitine homoeo-

stasis in humans is shown in Figure 4. BBD activity is 3–16-fold

higher in the kidney than in liver [70,31]. Activity in the brain

only has been reported by Rebouche and Engel, and is 50% of

the activity measured in the liver [31]. As in the rat [78], liver

BBD activity is regulated developmentally in humans [31,79]. In

contrast, kidney BBD activity is not age-dependent, since BBD

activity is already present at adult levels in newborns [79]. No

evidence was found that the activity of the other three enzymes

in liver is age-dependent [31].
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TML and butyrobetaine loading studies

Carnitine biosynthesis was investigated by supplementing adults,

which where fed on a low-carnitine diet, excess amounts of the

carnitine precursors lysine plus methionine, TML or butyro-

betaine [94]. Lysine plus methionine supplementation for 20 days

led to an increased carnitine production. However, the effect was

small and the underlying mechanism was not determined. A rise

in plasma TML was not observed, in contrast with another

study in which oral administration of lysine resulted in a 5-fold

increase in the plasma TML concentration [133]. Although TML

significantly increased carnitine synthesis, the increase was small

when compared with that resulting from TML loading in rats.

Similarly, the excretion of carnitine only doubled in infants who

were fed on TML for 14 days [79]. TML is taken up poorly by

both rat [114] and human tissues [117]. The rat kidney is capable

of tubular reabsorption of TML, whereas human kidney does

not reabsorb this compound. The less efficient use of TML as a

carnitine precursor in humans could therefore be ascribed to the

low capacity of tissues to take up TML, and the inability of

the human kidney to reabsorb this compound. Moreover, TMLD

is a mitochondrial enzyme, and its localization also may limit the

utilization of TML for carnitine synthesis, since this depends on

whether the exact submitochondrial localization of TMLD

requires transmembrane transport of TML.

More recently, Melegh and co-workers [134,135] performed a

single-day loading study in premature infants using orally

administered deuterium-labelled TML. They could not detect

incorporation of the deuterium label into urinary carnitine using

fast-atom-bombardment MS. As an extension of this study, Vaz

and co-workers performed a similar experiment with seven

full-term newborns, who received deuterium-labelled TML for

5 days, and used our novel assay for the analysis of the carnitine

biosynthesis metabolites in urine. After loading, all the meta-

bolites of carnitine biosynthesis could be detected in urine

in deuterium-labelled form, except for TMABA. In addition,

deuterium-labelled carnitine was also incorporated into acyl-

carnitines (F. M. Vaz, B. Melegh, J. Bene, D. Cuebas, D. A.

Gage, A. Bootsma, P. Vreken, A. H. van Gennip, L. L. Bieber

and R. J. A. Wanders, unpublished work). Most of the TML

(" 75%), however, was excreted unchanged in urine, which is in

agreement with previous findings that humans do not use

exogenous TML efficiently as a precursor for carnitine bio-

synthesis [117,134,135]. These results show that newborns have

the capability to synthesize carnitine from exogenous TML,

albeit at a low rate.

As in the rat, dietary butyrobetaine dramatically increased

urinary carnitine excretion and doubled plasma carnitine con-

centrations in humans [79]. Muscle carnitine concentrations

remained constant, suggesting that the higher carnitine levels

were the result of actual biosynthesis and did not originate from

release of tissue stores. The same group obtained similar results

in human infants, in whom the rate of carnitine excretion

increased 30-fold when the infants were fed butyrobetaine [79].

The authors concluded that BBD activity is not rate-limiting for

biosynthesis of carnitine in adults, as well as in infants.

Although TML loading studies have made an important

contribution to our understanding of carnitine biosynthesis, it

should be noted that, in these experiments, the intracellular

metabolism of TML is bypassed. Tissues like the heart and

muscle normally synthesize TML, but do not readily absorb it

from the circulation. It is believed that TML produced intra-

cellularly is converted into butyrobetaine in the tissue of origin,

after which butyrobetaine is excreted into the circulation and

converted into carnitine in tissues that contain BBD (Figure 4).

Unlike TML, butyrobetaine is absorbed readily by the liver and

converted into carnitine. These processes could be significant for

carnitine biosynthesis.

Another important observation made by Melegh and co-

workers [134,135] is that administration of deuterium-labelled

TML considerably increased unlabelled carnitine and butyro-

betaine excretion. In previous studies in which unlabelled pre-

cursors were used [79,94], the carnitine excretion was used to

calculate the rate of carnitine biosynthesis, assuming that this

carnitine was a result of actual biosynthesis. Especially in the

case of TML, these results should be re-evaluated, and additional

experiments performed using stable-isotope-labelled carnitine

precursors.

Transport of carnitine-biosynthesis metabolites

Although the exact interplay of tissues and metabolites involved

in carnitine biosynthesis is not entirely clear, it is evident that

transport of metabolites is required for complete synthesis of

carnitine. Very little is known about the transport of TML and

HTML, and their intracellular}tissue concentrations. The only

transport studies performed with these compounds are described

above and show that they are absorbed by the intestine [114].

The fact that rat kidney is able to efficiently reabsorb TML

implies that (at least in rat kidney) a transporter system exists,

which acts on this compound.

Considerably more is known about the transport of carnitine.

Since tissues such as the heart, muscle, liver and kidney are

highly dependent on the energy generated by β-oxidation, it is

essential that these tissues have sufficient amounts of carnitine.

Because the carnitine concentration in tissues is generally 20–50-

fold higher than in plasma [6,136], and since, in humans, only

kidney, liver and brain have the complete set of enzymes to

synthesize carnitine, most tissues depend on carnitine uptake

from the blood via active transport. Kinetic studies of the

plasmalemmal carnitine transporter have demonstrated similar

K
m

values of 2–60 µM for carnitine transport in muscle [137–139],

heart [140,141], placenta [142], and fibroblasts [130,139,143,144],

suggesting that they share a common transporter. This high-

affinity carnitine transport system is also involved in the tubular

reabsorption of carnitine in the kidney [117] and is dependent on

sodium ions [130].

In 1998, the cDNA sequence and genomic organization of a

new member of the organic cation transporter family (reviewed

in [145]), organic cation transporter 2 (OCTN2), was reported by

Wu and co-workers [146]. Subsequently, another group showed

that the OCTN2 gene (SLC22A5) codes for a high affinity (K
m

E
4.3 µM), sodium ion-dependent carnitine transporter [147].

Carnitine transport is strongly inhibited by acetylcarnitine and

butyrobetaine, suggesting that OCTN2 also transports these

compounds [147]. Northern blot analysis and in situ hybridization

studies in rat and human tissues showed that OCTN2 is expressed

in the proximal and distal tubules and in the glomeruli of the

kidney, in the myocardium, valves and arterioles of the heart, in

the labyrinthine layer of the placenta, and in the cortex, hip-

pocampus and cerebellum of the brain [147,148]. Further studies

showed that OCTN2 is localized on the apical membrane of

renal tubular epithelial cells, demonstrating that OCTN2 is

important in the concentrative reabsorption of carnitine after

glomerular filtration in the kidney [149].

Much higher K
m

values for carnitine transport have been

reported for human liver (500 µM) and brain (" 1000 µM), and

the existence of a low-affinity carnitine transporter therefore has

been suggested [150]. Recently, two additional proteins, OCTN1
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and ATB!,+, have been identified, which also are able to transport

carnitine. OCTN1, a homologue of OCTN2, has been shown to

be expressed predominantly in the liver, kidney and small

intestine [151,152]. The unrelated amino acid transporter ATB!,+

has been identified in mouse colon and has a high K
m

for

carnitine (0.83 mM) [153]. ATB!,+ could, therefore, like OCTN1,

represent the low-affinity carnitine transporter in liver and

brain.

Recent studies have shown that butyrobetaine is transported

actively across the basolateral plasma membrane of hepatocytes

(K
m

E 5 µM) and that this transport is, like OCTN2, also driven

by sodium ions [154]. Butyrobetaine transport is inhibited

significantly by propionylcarnitine, but not by TML, - or -

carnitine, or other acylcarnitines [154]. These results suggest that,

in the liver, which does not express OCTN2, another transport

system is present that specifically transports butyrobetaine, which

is destined for carnitine synthesis. Although carnitine transport

into the cell has been relatively well documented, it remains

unclear how carnitine synthesized de no�o is exported from

the site of biosynthesis (liver and kidney) into the circulation.

Since ATB!,+, OCTN1 and OCTN2 all transport carnitine into

the cell, the export of carnitine and its metabolites is prob-

ably mediated by another transport system, or possibly by

passive diffusion. Further research is needed to resolve this

issue.

The dependence on carnitine uptake is evident from patients

who suffer from primary systemic carnitine deficiency [CDSP;

OMIM (Online Mendelian Inheritance in Man): 212140]. These

patients show excessive renal and intestinal wastage of carnitine,

resulting in very low plasma and tissue carnitine concentrations.

Clinically, CDSP patients usually show symptoms of cardio-

myopathy, hepatomegaly, myopathy, recurrent episodes of hypo-

ketotic hypoglycaemia, hyperammonaemia and failure to thrive.

Studies of cells of CDSP patients have indicated that this disorder

is caused by a defect in the active cellular uptake of carnitine into

the cell [143,155–158]. The disorder is autosomal recessive, and

has been mapped to human chromosome 5q [159]. Shortly after

the identification of the high-affinity carnitine transporter

OCTN2, which is located on chromosome 5q33.1, it was demon-

strated that mutations in this gene cause CDSP [160–164]. In

addition, the murine orthologue of OCTN2 has been shown to

be mutated in the juvenile steatosis (JVS) mouse, which shows

symptoms similar to those of CDSP patients, and which is

considered to be the murine equivalent of human CDSP

[165–169].

The observation that butyrobetaine excretion in the JVS mouse

is 4 times that of control mice supports the concept that OCTN2

also mediates the reabsorption of butyrobetaine [167]. In-

terestingly, the activity of BBD in liver was twice that of

control mice. However, the butyrobetaine content was lower in

JVS mice, presumably due to the disturbed reabsorption of this

compound in the kidney. The urinary loss of the carnitine

precursor butyrobetaine therefore aggravates the carnitine de-

ficiency in the JVS mouse, and probably also the OCTN2

deficiency in man [167].

At present, the importance of carnitine biosynthesis for energy

homoeostasis remains unclear, and no patients have been identi-

fied in which one of the enzymes of carnitine biosynthesis is

deficient. Furthermore, no mutant mice or other organisms with

a defect in carnitine biosynthesis have been described. Since

omnivorous humans ingest sufficient carnitine from the diet, a

defect in carnitine biosynthesis would most probably not manifest

itself as systemic carnitine deficiency, except perhaps only when

the dietary intake is limited (vegetarians and vegans) or inter-

rupted by illness for a prolonged period [8].

CONCLUSIONS

Despite considerable progress in our understanding of carnitine

biosynthesis and metabolism, many questions remain concerning

the regulation of carnitine metabolism and the role of carnitine

biosynthesis in homoeostasis. The recent identification of three

of the four genes of this pathway and the development of an easy

method tomeasure the concentration of the carnitine biosynthesis

metabolites allows both the creation and characterization of a

mouse model in which one of the carnitine biosynthesis genes has

been disrupted. Such a mouse model is expected to provide more

insight into the role of this pathway in carnitine and fatty acid

metabolism.
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