# A novel $Ca^{2+}$ -induced $Ca^{2+}$ release mechanism mediated by neither inositol trisphosphate nor ryanodine receptors

Frank WISSING, Edmund P. NEROU and Colin W. TAYLOR<sup>1</sup>

Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QJ, U.K.

Members of both major families of intracellular Ca<sup>2+</sup> channels, ryanodine and inositol 1,4,5-trisphosphate (IP<sub>3</sub>) receptors, are stimulated by substantial increases in cytosolic free Ca<sup>2+</sup> concentration ( $[Ca^{2+}]_c$ ). They thereby mediate Ca<sup>2+</sup>-induced Ca<sup>2+</sup> release (CICR), which allows amplification and regenerative propagation of intracellular Ca2+ signals. In permeabilized hepatocytes, increasing  $[Ca^{2+}]_c$  to 10  $\mu$ M stimulated release of  $30 \pm 1\%$  of the intracellular stores within 60 s; the EC<sub>50</sub> occurred with a free  $[Ca^{2+}]$  of  $170 \pm 29$  nM. This CICR was abolished at 2 °C. The same fraction of the stores was released by CICR before and after depletion of the IP<sub>3</sub>-sensitive stores, and CICR was not blocked by antagonists of IP<sub>3</sub> receptors. Ryanodine, Ruthenium Red and tetracaine affected neither the Ca2+ content of the stores nor the CICR response.  $Sr^{2+}$  and  $Ba^{2+}$  (EC<sub>50</sub> = 166 nM and 28  $\mu$ M respectively) mimicked the effects of increased [Ca<sup>2+</sup>] on the intracellular stores, but Ni<sup>2+</sup> blocked the passive

# INTRODUCTION

Increases in cytosolic free  $Ca^{2+}$  concentration ([ $Ca^{2+}$ ]<sub>a</sub>) regulate almost every aspect of cellular activity [1]. Regulated opening of Ca<sup>2+</sup> channels in either the plasma membrane or the membranes of intracellular stores, primarily within the endoplasmic reticulum, is the most common means whereby extracellular stimuli evoke such increases in  $[Ca^{2+}]_c$ . It is, however, clear that the intracellular and extracellular sources do not behave independently. The Ca<sup>2+</sup> content of the intracellular Ca<sup>2+</sup> stores regulates Ca<sup>2+</sup> entry via the capacitative Ca<sup>2+</sup> entry pathway [2], and Ca<sup>2+</sup> passing through one channel may regulate the activity of other Ca<sup>2+</sup> channels. The latter occurs because most Ca<sup>2+</sup> channels are themselves regulated by cytosolic Ca<sup>2+</sup>. The increase in  $[Ca^{2+}]_{c}$  that follows opening of a channel often provides negative feedback, but for each of the major families of intracellular Ca2+ channels, ryanodine and inositol 1,4,5trisphosphate (IP<sub>3</sub>) receptors, Ca<sup>2+</sup> can both stimulate and inhibit channel opening [3,4]. Stimulation of intracellular Ca<sup>2+</sup> channels by Ca<sup>2+</sup> is important because it allows them, via Ca<sup>2+</sup>-induced  $Ca^{2+}$  release (CICR), to amplify the  $Ca^{2+}$  signal provided by other channels in either the plasma membrane [5] or the membranes of the intracellular stores [6]. CICR mediated by ryanodine [5,7,8] or IP<sub>2</sub> [8,9] receptors is clearly important for amplifying the Ca<sup>2+</sup> signals provided by Ca<sup>2+</sup> entry in cells such as cardiac myocytes [5], neurones [8,9], astrocytes [10] and pancreatic  $\beta$ -cells [7]. Indeed, the nature of the long-term changes in synaptic activity in the hippocampus depends on whether Ca2+ entry triggers CICR via ryanodine or IP<sub>3</sub> receptors [8]. Both ryanodine [11] and IP<sub>3</sub> [1,11] receptors are also known to amplify

leak of Ca<sup>2+</sup> without blocking CICR. In rapid superfusion experiments, maximal concentrations of IP<sub>3</sub> or Ca<sup>2+</sup> stimulated Ca<sup>2+</sup> release within 80 ms. The response to IP<sub>3</sub> was complete within 2 s, but CICR continued for tens of seconds despite a slow [half-time  $(t_{1/2}) = 3.54 \pm 0.07$  s] partial inactivation. CICR reversed rapidly  $(t_{1/2} = 529 \pm 17 \text{ ms})$  and completely when the [Ca<sup>2+</sup>] was reduced. We conclude that hepatocytes express a novel temperature-sensitive, ATP-independent CICR mechanism that is reversibly activated by modest increases in [Ca<sup>2+</sup>], and does not require IP<sub>3</sub> or ryanodine receptors or reversal of the sarcoplasmic/endoplasmic-reticulum Ca<sup>2+</sup>-ATPase. This mechanism may both regulate the Ca<sup>2+</sup> content of the intracellular stores of unstimulated cells and allow even small intracellular Ca<sup>2+</sup> signals to be amplified by CICR.

Key words: Ca<sup>2+</sup> stores, Ca<sup>2+</sup> release kinetics, CICR, hepatocytes.

the  $Ca^{2+}$  release mediated by neighbouring intracellular  $Ca^{2+}$  channels and to thereby generate a hierarchy of  $Ca^{2+}$  release events that may culminate in global  $Ca^{2+}$  waves. CICR is clearly a key feature of intracellular  $Ca^{2+}$  signalling [12].

The sensitivity of CICR to drugs that selectively inhibit IP<sub>3</sub> or ryanodine receptors has provided persuasive evidence for the involvement of these intracellular Ca<sup>2+</sup> channels in intact cells, but there are examples of CICR that appear not to be inhibited by these antagonists. In pancreatic  $\beta$ -cells, for example, although CICR appears to be mediated largely by ryanodine receptors, other unidentified channels may also contribute [7].

In the present study, we have identified a novel CICR mechanism in permeabilized hepatocytes. We conclude that a  $Ca^{2+}$  efflux pathway that is neither an IP<sub>3</sub> nor a ryanodine receptor mediates reversible release of  $Ca^{2+}$  from intracellular stores in response to modest increases in  $[Ca^{2+}]_c$ . We suggest that this sensitive CICR mechanism may both determine the  $Ca^{2+}$  content of the stores in unstimulated cells and provide an additional means of amplifying even small  $Ca^{2+}$  signals generated by other regulated  $Ca^{2+}$  channels.

### MATERIALS AND METHODS

### Materials

 $IP_3$  was purchased from American Radiolabeled Chemicals (St Louis, MO, U.S.A.). Xestospongin C and ionomycin were obtained from Calbiochem (Nottingham, U.K.). Ryanodine and thapsigargin were from Alamone Laboratories (Jerusalem, Israel), and  ${}^{45}Ca^{2+}$  was purchased from ICN (Thame, Oxon, U.K.). Sphingosine-1-phosphate, 2-aminoethoxydiphenyl

Abbreviations used: 2-APB, 2-aminoethoxydiphenyl borane;  $[Ca^{2+}]_c$ , cytosolic free  $Ca^{2+}$  concentration; CICR,  $Ca^{2+}$ -induced  $Ca^{2+}$  release; CLM, cytosol-like medium; IP<sub>3</sub>, inositol 1,4,5-trisphosphate; NAADP, nicotinic acid-adenine dinucleotide phosphate; SERCA, sarcoplasmic/endoplasmic-reticulum  $Ca^{2+}$ -ATPase;  $t_{1/2}$ , half-time.

<sup>&</sup>lt;sup>1</sup> To whom correspondence should be addressed (e-mail cwt1000@cam.ac.uk).

borane (2-APB), tetracaine, nicotinic acid–adenine dinucleotide phosphate (NAADP), Ruthenium Red and all other reagents were obtained from Sigma (Poole, Dorset, U.K.).

# Measurements of <sup>45</sup>Ca<sup>2+</sup> efflux

Hepatocytes were prepared from the livers of male Wistar rats [13], resuspended in cytosol-like medium (CLM; 140 mM KCl, 20 mM NaCl, 2 mM MgCl<sub>2</sub>, 1 mM EGTA and 20 mM Pipes, pH 7.0 at 37 °C), and permeabilized by incubation with saponin (10  $\mu$ g/ml for 8 min). The cells were then washed and resuspended (10<sup>7</sup> cells/ml) in CLM supplemented with 344  $\mu$ M CaCl<sub>2</sub> (free [Ca<sup>2+</sup>] = 200 nM), ATP (7.5 mM), carbonyl cyanide *p*-trifluoro-methoxyphenylhydrazone ('FCCP'; 10  $\mu$ M) and <sup>45</sup>Ca<sup>2+</sup> (10  $\mu$ Ci/ml). After 7 min at 37 °C, the <sup>45</sup>Ca<sup>2+</sup> content of the intracellular stores reached a steady state (1–2 nmol of Ca<sup>2+</sup>/10<sup>6</sup> cells) and the cells were used for unidirectional efflux experiments [13].

For most experiments, cells loaded with  ${}^{45}Ca^{2+}$  were diluted 5-fold into CLM containing an appropriate free [Ca<sup>2+</sup>] and thapsigargin (1  $\mu$ M), in order to inhibit further Ca<sup>2+</sup> uptake. Variations of this procedure are described in the text. At appropriate intervals, the  ${}^{45}Ca^{2+}$  contents of the stores were then determined by rapidly quenching the incubations with cold medium (310 mM sucrose/1 mM trisodium citrate), followed by filtration (Whatman glass-fibre C filters) using a Brandel receptor binding harvester (SEMAT, St Albans, Herts., U.K.). Active  ${}^{45}Ca^{2+}$  uptake was defined as that which could be released by the addition of 1  $\mu$ M ionomycin.

To resolve the rapid kinetics of  ${}^{45}Ca^{2+}$  efflux, permeabilized hepatocytes loaded to steady state with  ${}^{45}Ca^{2+}$  (15  $\mu$ Ci/ml) were immobilized within a filter sandwich held within a rapid superfusion apparatus. A complete description of the apparatus has been described previously [14]. Briefly, the equipment allowed  ${}^{45}Ca^{2+}$  release from the immobilized cells to be measured with a temporal resolution of up to 9 ms, as CLM flowed continuously (2 ml/s) over the cells and (with the  ${}^{45}Ca^{2+}$  released) into a circular fraction collector. Addition of a trace of [ ${}^{3}$ H]inulin to some of the media allowed changes of media to be precisely related to changes in  ${}^{45}Ca^{2+}$  efflux. All superfusion experiments were carried out at 20 °C, and the half-time ( $t_{1/2}$ ) for exchange of media bathing the cells was  $36 \pm 3$  ms (n = 3).

The free [Ca<sup>2+</sup>] of CLM was measured using fura 2 for Ca<sup>2+</sup> concentrations less than 1  $\mu$ M and a Ca<sup>2+</sup>-sensitive electrode (Russel, Auchtermuchly, Scotland, U.K.) for higher Ca<sup>2+</sup> concentrations, as previously described [3]. Free [Ba<sup>2+</sup>] and [Sr<sup>2+</sup>] were computed using the computer program, MaxChelator (http://www.stanford.edu/~cpatton/maxc.html).

### **RESULTS AND DISCUSSION**

# Modest increases in $\left[\text{Ca}^{2+}\right]_{\text{c}}$ stimulate $\text{Ca}^{2+}$ release from intracellular stores

Increasing  $[Ca^{2+}]_c$  stimulated  ${}^{45}Ca^{2+}$  release from the intracellular stores of hepatocytes that had been loaded to steady state with  ${}^{45}Ca^{2+}$ . During an incubation lasting 60 s, a maximally effective concentration of  $Ca^{2+}$  ( $[Ca^{2+}]_c = 10 \ \mu$ M) stimulated release of  $30 \pm 1 \%$  (n = 6) of the intracellular stores, and the EC<sub>50</sub> occurred when the  $[Ca^{2+}]_c$  was  $170 \pm 29$  nM (Figure 1). It is noteworthy that the amount of  ${}^{45}Ca^{2+}$  released from the stores by increasing  $[Ca^{2+}]_c$  (30 %) is comparable with the response evoked by a maximal concentration of IP<sub>3</sub> (28 %). The effect of Ca<sup>2+</sup> on the time course of unidirectional  ${}^{45}Ca^{2+}$  efflux from the intracellular stores is shown in Figure 2(A). At 37 °C, the  $t_{1/2}$  for  ${}^{45}Ca^{2+}$  efflux



Figure 1 CICR from the intracellular stores of permeabilized hepatocytes

Permeabilized cells loaded to steady state with  $^{45}\text{Ca}^{2+}$  in CLM containing a free [Ca<sup>2+</sup>] of 200 nM were diluted into CLM at 37 °C containing thapsigargin (1  $\mu$ M) and sufficient Ca<sup>2+</sup> to give the indicated final free [Ca<sup>2+</sup>]. After 60 s, the incubations were terminated and the  $^{45}\text{Ca}^{2+}$  contents of the stores were measured. Results are presented as means  $\pm$  S.E.M. from six independent experiments.

was  $140 \pm 4$  s (n = 3) when the free  $[Ca^{2+}]$  was approx. 20 nM, but in paired experiments the  $t_{1/2}$  decreased to  $69 \pm 12$  s when the free  $[Ca^{2+}]$  was  $10 \ \mu$ M. The mono-exponential curves fitted to the data shown in Figure 2(A) demonstrate that the only effect of increasing the  $[Ca^{2+}]$  was to decrease the  $t_{1/2}$  for  $Ca^{2+}$  efflux. The extrapolated initial  $Ca^{2+}$  contents of the stores were similar for cells in low and high  $Ca^{2+}$  ( $108 \pm 1 \ \%$  and  $108 \pm 9 \ \%$  respectively of their contents measured at 30 s) as were the  $Ca^{2+}$  contents extrapolated to infinite time ( $22 \pm 2 \ \%$  and  $20 \pm 5 \ \%$ ). The incomplete loss of  ${}^{45}Ca^{2+}$  from preloaded stores after sustained inhibition of  $Ca^{2+}$  uptake is consistent with previous work showing that luminal  $Ca^{2+}$  regulates the basal leak of  $Ca^{2+}$  from the intracellular stores of hepatocytes [15].

It is important to emphasize that in each of these experiments, changes in the free [Ca<sup>2+</sup>] were accompanied by changes in the specific activity of the <sup>45</sup>Ca<sup>2+</sup>. We therefore sought to eliminate the possibility that the responses might simply reflect an exchange of <sup>45</sup>Ca<sup>2+</sup> for <sup>40</sup>Ca<sup>2+</sup> with no net change in the Ca<sup>2+</sup> content of the stores. For practical reasons, it proved impossible to reliably measure the effects of substantially increasing the  $[Ca^{2+}]$  while preserving the specific activity of <sup>45</sup>Ca<sup>2+</sup>. Instead, we argued that if <sup>40</sup>Ca<sup>2+</sup>/<sup>45</sup>Ca<sup>2+</sup> exchange contributed significantly to the loss of <sup>45</sup>Ca<sup>2+</sup> from the intracellular stores, we would expect the rate of <sup>45</sup>Ca<sup>2+</sup> efflux to be faster if addition of thapsigargin was accompanied by dilution of the specific activity of the <sup>45</sup>Ca<sup>2+</sup> in the CLM. The results demonstrate that when <sup>45</sup>Ca<sup>2+</sup> efflux was measured under conditions that maintained the free  $[Ca^{2+}]$  of the CLM, the rate of <sup>45</sup>Ca<sup>2+</sup> efflux after addition of thapsigargin was similar whether measured with no change in the specific activity of  ${}^{45}\text{Ca}^{2+}$  ( $t_{1/2}$  for efflux = 173 ± 4 s, n = 3) or following a 5-fold reduction in the specific activity of  ${}^{45}Ca^{2+}$   $(t_{1/2} = 152 \pm 5 \text{ s}, n =$ 3). We conclude that the release of  ${}^{45}Ca^{2+}$  evoked by increasing the free  $[Ca^{2+}]$  is unlikely to result from  ${}^{40}Ca^{2+}/{}^{45}Ca^{2+}$  exchange.





(A) Permeabilized cells loaded with <sup>45</sup>Ca<sup>2+</sup> in normal CLM were rapidly diluted into CLM containing thapsigargin (1  $\mu$ M) and either nominally Ca<sup>2+</sup>-free CLM (free [Ca<sup>2+</sup>] of approx. 20 nM;  $\bigcirc$ ,  $\square$ ) or CLM containing 10  $\mu$ M free Ca<sup>2+</sup> ( $\blacksquare$ ,  $\bigcirc$ ). The incubations at either 37 °C ( $\blacksquare$ ,  $\square$ ) or 2 °C ( $\bigcirc$ ,  $\bigcirc$ ) were then terminated at the indicated times. Lines are fitted to mono-exponential equations. (**B** and **C**) The Ca<sup>2+</sup> contents of the stores are shown after incubations lasting 60 s (**B**) or for the times shown (**C**) at the indicated temperatures in nominally Ca<sup>2+</sup>-free CLM ( $\blacksquare$ ) or CLM with 10  $\mu$ M free Ca<sup>2+</sup> ( $\square$ ). Results (percentages of Ca<sup>2+</sup> content after 30 s in nominally Ca<sup>2+</sup>-free CLM) are presented as the means ± S.E.M. from six (37 °C) or three (2 °C and 20 °C) independent experiments. Note that the final free [Ca<sup>2+</sup>] is achieved by dilution of cells (most experiments, and all the results shown in this Figure) or complete replacement of the incubation medium by superfusion (Figure 6).

Collectively, these results suggest that an increase in  $[Ca^{2+}]_c$ stimulates a slow leak of  $Ca^{2+}$  from all of the intracellular  $Ca^{2+}$ stores of permeabilized hepatocytes. Because thapsigargin prevents  $Ca^{2+}$  from leaking from the endoplasmic reticulum through the sarcoplasmic/endoplasmic-reticulum  $Ca^{2+}$ -ATPase (SERCA) [16], the CICR response observed in the presence of thapsigargin cannot result from the SERCA running in reverse. Nor is it likely that the CICR response simply reflects an increased rate of  ${}^{40}Ca^{2+}/{}^{45}Ca^{2+}$  exchange.

At 2 °C, the rate of <sup>45</sup>Ca<sup>2+</sup> efflux was much slower than at 37 °C, in keeping with previous work [15], and the rates were similar in CLM containing a  $[Ca^{2+}]_{e}$  of approx. 40 nM or 100  $\mu$ M (Figures 2A and 2B). Because both IP<sub>3</sub> receptors [17] and ryanodine receptors [18] respond to their agonists at 2 °C, the inhibition of CICR in hepatocytes at 2 °C provides the first indication that the response may be mediated by neither ryanodine nor IP33 receptors. At 20 °C (the only practicable temperature for rapid superfusion experiments, see below), the rate of  ${}^{45}\text{Ca}^{2+}$  efflux was slower than at 37 °C ( $t_{1/2} = 474 \pm 72$  s in CLM containing approx. 30 nM free [Ca<sup>2+</sup>]), but Ca<sup>2+</sup> efflux was stimulated by Ca<sup>2+</sup> (Figure 2C). These results establish that under conditions where the SERCA has been completely inhibited [15], concentrations of Ca2+ similar to those found in unstimulated cells, stimulate temperature-sensitive Ca2+ efflux from the intracellular stores.

# Neither ryanodine nor IP<sub>3</sub> receptors mediate the CICR

Each of the three isoforms of IP<sub>3</sub> and ryanodine receptors is stimulated by increases in  $[Ca^{2+}]_c$  [3,4,19]. We therefore sought to establish whether either of these families of intracellular Ca<sup>2+</sup> channels might be responsible for the CICR. In CLM without added Ca<sup>2+</sup> ([Ca<sup>2+</sup>]<sub>c</sub> of approx. 20 nM), a maximally effective concentration of IP<sub>3</sub> (10  $\mu$ M) released 28 ± 2 % of the Ca<sup>2+</sup> stores within 30 s. Subsequent addition of Ca2+, to increase the free  $[Ca^{2+}]$  to 10  $\mu$ M, released 29  $\pm$  2 % of the remaining stores during a 60 s incubation. The same fraction of the Ca<sup>2+</sup> stores  $(29 \pm 1 \%)$ was released by  $10 \,\mu\text{M}$  Ca<sup>2+</sup> when it was added without prior stimulation by  $IP_3$  (Figure 3A). These results establish that CICR persists after complete depletion of the IP<sub>3</sub>-sensitive Ca<sup>2+</sup> stores. Because the same fraction of the stores was released before and after depletion of the IP<sub>3</sub>-sensitive stores, this suggests further that the CICR mechanism is expressed similarly in IP<sub>2</sub>sensitive and IP<sub>2</sub>-insensitive Ca<sup>2+</sup> stores, consistent with our measurements of the effects of Ca2+ on rates of 45Ca2+ efflux (see above; Figure 2A).

Heparin, 2-APB and xestospongin C [20] have each been reported to be antagonists of IP<sub>3</sub> receptors. Heparin (100  $\mu$ g/ml) blocked the release of <sup>45</sup>Ca<sup>2+</sup> evoked by a submaximal concentration (200 nM) of IP<sub>3</sub> (results not shown), consistent with its well documented ability to compete with IP<sub>3</sub> for binding to the IP<sub>3</sub> receptor [21]. However, 2-APB which has been reported to block IP<sub>3</sub>-evoked Ca<sup>2+</sup> release without affecting IP<sub>3</sub> binding [22], and which has been extensively used to address the physiological roles of IP<sub>3</sub> receptors [23,24], proved not to be a useful antagonist of IP<sub>3</sub> receptors in hepatocytes. 2-APB (75  $\mu$ M) directly stimulated  $Ca^{2+}$  efflux, while only modestly increasing the EC<sub>50</sub> for IP<sub>3</sub>evoked Ca<sup>2+</sup> release (from  $156 \pm 8 \text{ nM}$  to  $324 \pm 35 \text{ nM}$ ) and modestly decreasing the response to a maximal concentration of  $IP_3$  (from  $47 \pm 1\%$  to  $43 \pm 1\%$  release) (Figure 4). Indeed, the inhibition of the Ca2+ release evoked by a submaximal concentration of IP<sub>3</sub> (IC<sub>50</sub> = 39  $\mu$ M) is only slightly more sensitive to 2-APB than is the stimulation of  $Ca^{2+}$  efflux (EC<sub>50</sub> = 63  $\mu$ M) (Figure 4). We conclude, in keeping with other recent reports [7,25], that 2-APB cannot be used to selectively block IP<sub>3</sub> receptors without causing substantial stimulation of Ca<sup>2+</sup> release.

Incubation of cells with heparin ( $\leq 1 \text{ mg/ml}$ ), 2-APB ( $\leq 100 \,\mu\text{M}$ ) or xestospongin C (5  $\mu$ M), a non-competitive antagonist



Figure 3 Neither IP<sub>3</sub> nor ryanodine receptors mediate the CICR

(A) Cells were stimulated for 30 s with IP<sub>3</sub> (10  $\mu$ M) in CLM with a free [Ca<sup>2+</sup>] of approx. 20 nM, before either continuing the incubation in the same CLM ( $\square$ ) or increasing the free [Ca<sup>2+</sup>] to 10  $\mu$ M ( $\blacksquare$ ). The <sup>45</sup>Ca<sup>2+</sup> contents of the stores (means  $\pm$  S.E.M.,  $n \ge 3$ ) were measured 60 s later. The results demonstrate that Ca<sup>2+</sup> stimulates release of a similar fraction of the Ca<sup>2+</sup> stores whether (right-hand bars) or not (left-hand bars) the IP<sub>3</sub>-sensitive stores have been emptied. (**B**) Cells were pre-treated with the indicated drugs for 30 s in CLM with a free [Ca<sup>2+</sup>] of approx. 20 nM before increasing the free [Ca<sup>2+</sup>] to 10  $\mu$ M and then measuring the <sup>45</sup>Ca<sup>2+</sup> contents of the stores after a further 60 s. Results (means  $\pm$  S.E.M.,  $n \ge 3$ ) are expressed as percentages of the Ca<sup>2+</sup> content of control cells in CLM with low Ca<sup>2+</sup>. White bars represent responses in CLM with a free [Ca<sup>2+</sup>] of approx. 20 nM, and black bars those from cells in CLM with a free [Ca<sup>2+</sup>] of 10  $\mu$ M. The following concentrations of the drugs were used: 2-APB, 60 or 100  $\mu$ M; Ruthenium Red (Ruth Red), 100  $\mu$ M; and tetracaine (Tetra), 1 mM.

of  $IP_3$  receptors [20], did not prevent CICR (Figure 3B). We conclude that the CICR response is not mediated by  $IP_3$  receptors.

It is unclear whether hepatocytes express functional ryanodine receptors. Specific [<sup>3</sup>H]ryanodine-binding sites have been detected in hepatocytes [26], but neither their properties nor the conflicting reports of the effects of ryanodine on intracellular Ca<sup>2+</sup> stores [27–29] are entirely consistent with the properties of known ryanodine receptors. There are conflicting reports too of the ability of cADP-ribose to stimulate Ca<sup>2+</sup> release from the intracellular stores of hepatocytes [29,30]. Finally, liver appears not to express mRNA for any of the three ryanodine receptor subtypes [31] and nor do antisera detect them [30].

All three known subtypes of ryanodine receptor are inhibited by appropriate concentrations of ryanodine or Ruthenium Red [32]. Preincubation of permeabilized hepatocytes with ryanodine (100  $\mu$ M), Ruthenium Red (100  $\mu$ M) or tetracaine (1 mM), another antagonist of ryanodine receptors (and perhaps also of IP<sub>3</sub> receptors [33]), did not affect their Ca<sup>2+</sup> content in nominally Ca<sup>2+</sup>-free CLM, and nor did it affect the subsequent CICR (Figure 3B). We chose not to use caffeine to address the possible



Figure 4 Effects of 2-APB on intracellular Ca<sup>2+</sup> stores

(A) Concentration-dependent effect of IP<sub>3</sub> in the absence ( $\bigcirc$ ) or presence ( $\bigcirc$ ) of 75  $\mu$ M 2-APB. (B) Concentration-dependent effect of 2-APB on the Ca<sup>2+</sup> content of unstimulated cells ( $\blacksquare$ ) and cells stimulated with 200 nM IP<sub>3</sub> ( $\square$ ). The bottom trace ( $\bigcirc$ , control minus IP<sub>3</sub>) shows the direct effect of 2-APB on responses to IP<sub>3</sub>. Results (percentages of control) are presented as means  $\pm$  S.E.M. ( $n \ge 3$ ).

involvement of ryanodine receptors, because earlier work suggested that it stimulated  $Ca^{2+}$  release from hepatocytes by a mechanism that did not involve ryanodine receptors [28].

Sphingosine-1-phosphate [34] and NAADP [35] also stimulate release of Ca<sup>2+</sup> from the intracellular stores of some cells. Responses to NAADP are not modulated by Ca<sup>2+</sup> [36], but the effects of Ca<sup>2+</sup> on responses to sphingosine-1-phosphate appear not to have been investigated. Neither of these mechanisms is likely to mediate CICR in hepatocytes, because we have consistently failed to detect Ca<sup>2+</sup> mobilization after stimulation of permeabilized hepatocytes with NAADP ( $\leq 25 \,\mu$ M) or sphingosine-1-phosphate ( $\leq 50 \,\mu$ M) (results not shown).

Because Ni<sup>2+</sup> blocks many Ca<sup>2+</sup> channels, we examined its effect on CICR. Addition of Ni<sup>2+</sup> (free [Ni<sup>2+</sup>] of approx. 100  $\mu$ M) almost completely blocked the passive efflux of <sup>45</sup>Ca<sup>2+</sup> recorded after addition of thapsigargin, without blocking the Ca<sup>2+</sup> release evoked by increasing the free [Ca<sup>2+</sup>] (Figure 5A). These results indicate that the pathways through which Ca<sup>2+</sup> normally leaks from intracellular stores appear to be completely inhibited by Ni<sup>2+</sup> (Figure 5A), but the mechanism that mediates CICR is insensitive to Ni<sup>2+</sup>. For both IP<sub>3</sub> and ryanodine receptors, the stimulatory effect of Ca<sup>2+</sup> is mimicked by Sr<sup>2+</sup> but not by Ba<sup>2+</sup>



Figure 5 Effects of other bivalent cations on CICR

(A) Permeabilized cells loaded with  ${}^{45}Ca^{2+}$  in normal CLM were diluted into CLM containing a free  $[Ca^{2+}]$  of approx. 20 nM ( $\Box$ ) or 100  $\mu$ M ( $\blacksquare$ ), each containing 100  $\mu$ M Ni<sup>2+</sup>. The time courses of the subsequent change in the  ${}^{45}Ca^{2+}$  contents of the stores are shown. (**B**) Cells loaded with  ${}^{45}Ca^{2+}$  were diluted 5-fold into nominally  $Ca^{2+}$ -free CLM (0-Ca) or into CLM supplemented with the incleated bivalent cations, with final free concentrations of approx. 350  $\mu$ M (Sr<sup>2+</sup> and Ba<sup>2+</sup>) or 100  $\mu$ M ( $a^{2+}$  and Ni<sup>2+</sup>). After 60 s, the  ${}^{45}Ca^{2+}$  contents of the stores were determined. Results are shown as means  $\pm$  S.E.M. (n = 3). \*Significantly different from Ni<sup>2+</sup> alone (P < 0.05). (**C**) Cells loaded with  ${}^{45}Ca^{2+}$  were diluted into CLM containing 1  $\mu$ M thapsigargin and the indicated free concentrations of Sr<sup>2+</sup> ( $\bigcirc$ ) or Ba<sup>2+</sup> ( $\bigcirc$ ). Incubations were terminated after 2 min and the  ${}^{45}Ca^{2+}$  contents of the stores are expressed as percentages of that observed for cells diluted into nominally Ca<sup>2+</sup>-free CLM (means  $\pm$  S.E.M., n = 3).

[37,38]. A similar pattern is evident for the CICR response. During an incubation lasting 60 s, a high concentration (free concentration of approx.  $350 \ \mu$ M) of either Ba<sup>2+</sup> or Sr<sup>2+</sup> mimicked the effect of Ca<sup>2+</sup> by stimulating release of approx. 25 % of the intracellular Ca<sup>2+</sup> stores (Figure 5B). However, whereas Sr<sup>2+</sup> (EC<sub>50</sub> of approx. 166 nM) and Ca<sup>2+</sup> (EC<sub>50</sub> = 170 nM; Figure 1) were similarly potent in stimulating  ${}^{45}Ca^{2+}$  release,  $Ba^{2+}$  (EC<sub>50</sub> = 28  $\mu$ M) was more than 150-fold less potent (Figure 5C). This pattern of regulation (Ca<sup>2+</sup>  $\approx$  Sr<sup>2+</sup>  $\gg$  Ba<sup>2+</sup>) is consistent with the effects of these bivalent cations in regulating many Ca<sup>2+</sup>-sensitive processes (see [37]).

#### Sustained, reversible activation of CICR

To explore the kinetics of CICR, we used rapid superfusion methods. For these experiments, permeabilized cells pre-loaded with <sup>45</sup>Ca<sup>2+</sup> were immobilized on a filter array. This allows <sup>45</sup>Ca<sup>2+</sup> efflux to be measured at 20 °C in the absence of ATP and without addition of thapsigargin (both of which were present in the earlier experiments), and under conditions where the free  $[Ca^{2+}]$ could be rapidly increased from approx. 5 nM to 10  $\mu$ M. Figure 6(A) shows that when the free  $[Ca^{2+}]$  of the superfusing CLM was rapidly increased from approx. 5 nM to  $10 \mu \text{M}$ , there was a substantial increase in the rate of <sup>45</sup>Ca<sup>2+</sup> release, which then decayed  $(t_{1/2} = 3.54 \pm 0.07 \text{ s}, n = 3)$  to a level  $(0.85 \pm 0.05 \%/\text{s} \text{ at})$ infinite time) that remained significantly faster than the rate of <sup>45</sup>Ca<sup>2+</sup> release from cells in nominally Ca<sup>2+</sup>-free medium  $(0.43 \pm 0.03 \% / s \text{ at } 30 \text{ s})$  (Figure 6A). Because the  ${}^{45}\text{Ca}{}^{2+}$  content of the stores declines as <sup>45</sup>Ca<sup>2+</sup> is released, we expect the amount of <sup>45</sup>Ca<sup>2+</sup> released into each fraction to fall as the response progresses. However, during the 10s following addition of 100  $\mu$ M Ca<sup>2+</sup>, the stimulated rate of CICR falls by approx. 70 % from its peak rate (Figure 6A), whereas the <sup>45</sup>Ca<sup>2+</sup> content of the stores falls by less than 18%; the declining rate of CICR is not therefore a simple consequence of the declining <sup>45</sup>Ca<sup>2+</sup> content of the intracellular stores. We conclude that CICR responses slowly inactivate ( $t_{1/2} = 3.54 \pm 0.07$  s), but that the inactivation is incomplete.

Figure 6(B) shows CICR results obtained at greater temporal resolution (80 ms) and with the free  $[Ca^{2+}]$  of the CLM increased to 100  $\mu$ M Ca<sup>2+</sup> for only 500 ms before rapidly restoring it to approx. 5 nM. The results show that CICR is triggered within 80 ms of increasing the free [Ca<sup>2+</sup>] of the superfusing CLM and that when the free [Ca<sup>2+</sup>] is subsequently reduced, the rate of <sup>45</sup>Ca<sup>2+</sup> release rapidly falls ( $t_{1/2} = 529 \pm 17 \text{ ms}$ ) to a rate  $(1.36 \pm 0.04 \%/s, n = 3)$  indistinguishable from that recorded before the Ca<sup>2+</sup> stimulus  $(1.37 \pm 0.06 \% / s)$ . These results establish that CICR is rapidly activated by an increase in free [Ca<sup>2+</sup>] and is rapidly and fully reversed when the  $[Ca^{2+}]$  is reduced. The superfusion experiments are performed in the absence of ATP; neither activation of CICR nor its reversal can therefore require ATP. Furthermore, the rapid flow of medium around the cells during superfusion experiments (2 ml/s), together with our earlier demonstration that within the apparatus the intracellular stores are freely accessible to even very large molecules [14], effectively eliminate the possibility that any additional soluble messenger is required for the CICR.

Although prolonged (60 s) stimulation with maximally effective concentrations of IP<sub>3</sub> or Ca<sup>2+</sup> release similar fractions of the intracellular Ca<sup>2+</sup> stores (approx. 30 %; Figure 3A), the time courses of the responses are very different for the two stimuli. The peak rate of stimulated Ca<sup>2+</sup> release evoked by 10  $\mu$ M IP<sub>3</sub> (32.8 ± 1.4 %/s) is approx. ten times greater than that evoked by 10  $\mu$ M Ca<sup>2+</sup> (3.71±0.21 %/s) (Figure 6C). But whereas the response to IP<sub>3</sub> is complete within 2 s (Figure 3C), the Ca<sup>2+</sup> release evoked by increased [Ca<sup>2+</sup>]<sub>c</sub> continues, despite a partial inactivation, for tens of seconds (Figure 6A). The inset to Figure 6(C) compares the responses to sustained stimulation with IP<sub>3</sub> and Ca<sup>2+</sup> recorded under similar conditions and at the same temporal resolution.



## Figure 6 Kinetics of CICR

Permeabilized cells loaded with  ${}^{45}\text{Ca}{}^{2+}$  in normal CLM were immobilized on the filters of a rapid superfusion apparatus and then continuously superfused with CLM (2 ml/s) while the effluent was collected into vials arranged around the circumference of a turntable. (A) Cells were superfused for 5 s with CLM containing a free [Ca<sup>2+</sup>] of approx. 5 nM and then the medium was switched to CLM with a free [Ca<sup>2+</sup>] of either approx. 5 nM ( $\bigcirc$ ) or 10  $\mu$ M ( $\bigcirc$ ). The broken line denotes the arrival in the superfusate of [<sup>3</sup>H]inulin, included as an inert marker in the CLM containing 10  $\mu$ M Ca<sup>2+</sup>. Fractions were collected at 500 ms intervals and the results are shown as percentages of the entire  ${}^{45}\text{Ca}{}^{2+}$  content of the intracellular Ca<sup>2+</sup> stores. (B)  ${}^{45}\text{Ca}{}^{2+}$  release from cells stimulated for only 500 ms with CLM containing 100  $\mu$ M Ca<sup>2+</sup> (denoted by the broken line showing the [<sup>3</sup>H]inulin marker). Fractions were collected at 80 ms intervals. (C) The main panel shows  ${}^{45}\text{Ca}{}^{2+}$  release from cells continuously stimulated with 10  $\mu$ M IP<sub>3</sub> (denoted by the broken line showing the [<sup>3</sup>H]inulin marker). Fractions were collected at 80 ms intervals. (C) The main panel shows responses to IP<sub>3</sub> (10  $\mu$ M;  $\bigcirc$ ) and Ca<sup>2+</sup> (10  $\mu$ M;  $\bigcirc$ ) collected under identical conditions and drawn to the same scale (n = 3, but error bars are omitted for clarity). All results (A-C) are presented as means  $\pm$  S.E.M. (n = 3).

### Conclusions

We conclude that the intracellular  $Ca^{2+}$  stores of hepatocytes express a temperature-sensitive, ATP-independent CICR mech-

anism that is reversibly activated by modest increases in [Ca<sup>2+</sup>]. This Ca<sup>2+</sup> release mechanism requires neither IP<sub>3</sub> nor ryanodine receptors, it is not mediated by the SERCA running in reverse, and it is not likely to be mediated by the intracellular Ca<sup>2+</sup> channels that respond to NAADP, which are Ca2+-insensitive [35,36], or sphingosine-1-phosphate. We considered the possibility that the <sup>45</sup>Ca<sup>2+</sup> release detected might simply result from an increased rate of <sup>40</sup>Ca<sup>2+</sup>/<sup>45</sup>Ca<sup>2+</sup> exchange, but that seems very unlikely. The CICR detected in our experiments is abolished at 2 °C (Figure 1A), it is activated by relatively low  $[Ca^{2+}]_{e}$  (Figure 1), <sup>45</sup>Ca<sup>2+</sup> efflux in normal CLM occurs at similar rates before and after 5-fold dilution of <sup>45</sup>Ca<sup>2+</sup> specific acivity, CICR is mimicked by Sr<sup>2+</sup> and with lesser potency by Ba<sup>2+</sup> (Figures 5B and 5C), Ni<sup>2+</sup> prevents the basal <sup>45</sup>Ca<sup>2+</sup> leak without affecting CICR (Figure 5A), and CICR partially inactivates (Figures 6A and 6B). Finally, after rapid removal of  $Ca^{2+}$ , the free  $[Ca^{2+}]$  of the superfusing medium falls below that required to evoke CICR within approx. 100 ms, yet CICR reverses more slowly  $(t_{1/2} =$  $529 \pm 17$  ms) (Figure 6B). None of these characteristics are consistent with the effects of increased [Ca<sup>2+</sup>]<sub>c</sub> resulting simply from enhanced <sup>40</sup>Ca<sup>2+</sup>/<sup>45</sup>Ca<sup>2+</sup> exchange. Instead, they suggest that modest increases in  $[Ca^{2+}]_c$  stimulate the opening of a channel that allows Ca<sup>2+</sup> to leak from the intracellular stores. We have not established the identity of this novel Ca2+ release pathway, but it is likely to be directly regulated by Ca2+ with no further requirement for additional soluble messengers. This CICR mechanism is more sensitive to cytosolic Ca<sup>2+</sup> than either ryanodine or IP<sub>3</sub> receptors; unlike these receptors it is not inhibited by further increases in [Ca2+], and, furthermore, it remains active during sustained increases in [Ca<sup>2+</sup>]. We suggest that although the properties of IP<sub>3</sub> and ryanodine receptors are well suited to allowing brisk responses to local increases in [Ca<sup>2+</sup>], the characteristics of this novel CICR pathway may allow it to regulate the Ca2+ content of the intracellular stores of unstimulated cells. Furthermore, although the effects of modest increases in [Ca<sup>2+</sup>]<sub>c</sub> must depend on the balance between stimulation of Ca<sup>2+</sup> uptake by the endoplasmic reticulum and stimulation of Ca2+ release processes [12], the novel CICR mechanism we have described may provide an additional route for Ca<sup>2+</sup> release that could allow even small Ca<sup>2+</sup> signals to be amplified by CICR.

This work was supported by The Wellcome Trust.

### REFERENCES

- Berridge, M. J., Lipp, P. and Bootman, M. D. (2000) The versatility and universality of calcium signalling. Nat. Rev. Mol. Cell Biol. 1, 11–21
- 2 Putney, Jr, J. W. (1997) Capacitative Calcium Entry, p. 210, R. G. Landes Company, Austin
- 3 Swatton, J. E., Morris, S. A., Cardy, T. J. A. and Taylor, C. W. (1999) Type 3 inositol trisphosphate receptors in RINm5F cells are biphasically regulated by cytosolic Ca<sup>2+</sup> and mediate quantal Ca<sup>2+</sup> mobilization. Biochem. J. **344**, 55–60
- 4 Sonnleitner, A., Conti, A., Berocchini, F., Schindler, H. and Sorrentino, V. (1998) Functional properties of the ryanodine receptor type 3 (RyR3) Ca<sup>2+</sup> release channel. EMBO J. **17**, 2790–2798
- 5 Wang, S.-Q., Song, L.-S., Lakatta, E. G. and Cheng, H. (2001)  $Ca^{2+}$  signalling between single L-type  $Ca^{2+}$  channels and ryanodine receptors in heart cells. Nature (London) **410**, 592–596
- 6 Marchant, J. S. and Parker, I. (2001) Role of elementary Ca<sup>2+</sup> puffs in generating repetitive Ca<sup>2+</sup> oscillations. EMBO J. 20, 65–76
- 7 Lemmens, R., Larsson, O., Berggren, P.-O. and Islam, M. S. (2001)  $Ca^{2+}$ -induced  $Ca^{2+}$  release from the endoplasmic reticulum amplified the  $Ca^{2+}$  signal mediated by activation of voltage-gated L-type  $Ca^{2+}$  channels in pancreatic  $\beta$ -cells. J. Biol. Chem. **276**, 9971–9977
- 8 Nishiyama, M., Hong, K., Mikoshiba, K., Poo, M.-M. and Kato, K. (2000) Calcium stores regulate the polarity and input specificity of synaptic modification. Nature (London) 408, 584–588

- 9 Nakamura, T., Barbara, J.-G., Nakamura, K. and Ross, W. N. (1999) Synergistic release of Ca<sup>2+</sup> from IP<sub>3</sub>-sensitive stores evoked by synaptic activation of mGluRs paired with back-propagating action potentials. Neuron **24**, 727–737
- 10 Sharma, G. and Vijayaraghavan, S. (2001) Nicotinic cholinergic signaling in hippocampal astrocytes involves calcium-induced calcium release from intracellular stores. Proc. Natl. Acad. Sci. U.S.A. **98**, 4148–4153
- 11 Galione, A., McDougall, A., Busa, W. B., Willmott, N., Gillot, I. and Whitaker, M. (1993) Redundant mechanisms of calcium-induced calcium release underlying calcium waves during fertilization of sea urchin eggs. Science (Washington, D.C.) 261, 348–352
- 12 Albrecht, M. A., Colegrove, A. L., Hongpaisan, J., Pivorarova, N. B., Andrews, S. B. and Friel, D. D. (2001) Multiple modes of calcium-induced calcium release in sympathetic neurons I: attenuation of endoplasmic reticulum Ca<sup>2+</sup> accumulation at low [Ca<sup>2+</sup>]<sub>i</sub> during weak depolarization. J. Gen. Physiol. **118**, 83–100
- 13 Taylor, C. W. and Marchant, J. S. (1999) Measuring inositol 1,4,5-trisphosphateevoked Ca<sup>2+</sup> release from intracellular Ca<sup>2+</sup> stores. In Signal Transduction. A Practical Approach (Milligan, G., ed.), pp. 361–384, IRL Press, Oxford
- 14 Marchant, J. S. and Taylor, C. W. (1997) Cooperative activation of IP<sub>3</sub> receptors by sequential binding of IP<sub>3</sub> and Ca<sup>2+</sup> safeguards against spontaneous activity. Curr. Biol. 7, 510–518
- 15 Beecroft, M. D. and Taylor, C. W. (1998) Luminal Ca<sup>2+</sup> regulates passive Ca<sup>2+</sup> efflux from the intracellular stores of hepatocytes. Biochem. J. **334**, 431–435
- 16 Du, G. G., Ashley, C. C. and Lea, T. J. (1996) Ca<sup>2+</sup> effluxes from the sarcoplasmic reticulum vesicles of frog muscle: effects of cyclopiazonic acid and thapsigargin. Cell Calcium **20**, 355–359
- 17 Oldershaw, K. A., Nunn, D. L. and Taylor, C. W. (1991) Quantal Ca<sup>2+</sup> mobilization stimulated by inositol 1,4,5-trisphosphate in permeabilized hepatocytes. Biochem. J. 278, 705–708
- 18 Sitsapesan, R., Montgomery, R. A. P., MacLeod, K. T., Williams, A. J., (1991) Sheep cardiac sarcoplasmic reticulum calcium-release channels: modification of conductance and gating by temperature. J. Physiol. (Cambridge) 434, 469–488
- 19 Ehrlich, B. E., Kaftan, E., Bezprozvannaya, S. and Bezprozvanny, I. (1994) The pharmacology of intracellular Ca<sup>2+</sup>-release channels. Trends Pharmacol. Sci. 15, 145–149
- 20 Gafni, J., Munsch, J. A., Lam, T. H., Catlin, M. C., Costa, L. G., Molinski, T. F. and Pessah, I. N. (1997) Xestospongins: potent membrane permeable blockers of the inositol 1,4,5-trisphosphate receptor. Neuron **19**, 723–733
- 21 Taylor, C. W. and Richardson, A. (1991) Structure and function of inositol trisphosphate receptors. Pharmacol. Ther. 51, 97–137
- 22 Maruyama, T., Kanaji, T., Nakade, S., Kanno, T. and Mikoshiba, K. (1997) 2APB, 2-aminoethoxydiphenyl borate, a membrane-penetrable modulator of Ins(1,4,5)P<sub>3</sub>induced Ca<sup>2+</sup> release. J. Biochem. (Tokyo) **122**, 498–505
- 23 Ma, H.-T., Patterson, R. L., van Rossum, D. B., Birnbaumer, L., Mikoshiba, K. and Gill, D. L. (2000) Requirement of the inositol trisphosphate receptor for store-operated Ca<sup>2+</sup> channels. Science (Washington, D.C.) **287**, 1647–1651

Received 26 July 2001/9 October 2001; accepted 15 November 2001

- 24 Ascher-Landsberg, J., Saunders, T., Elovitz, M. and Phillipe, M. (1999) The effects of 2-aminoethoxdiphenyl borate, a novel inositol 1,4,5-trisphosphate receptor modulator, on myometrial contractions. Biochem. Biophys. Res. Commun. **264**, 979–982
- 25 Missiaen, L., Callewaert, G., De Smedt, H. and Parys, J. B. (2001) 2-Aminoethoxydiphenyl borate affects the inositol 1,4,5-trisphosphate receptor, the intracellular Ca<sup>2+</sup> pump and the non-specific Ca<sup>2+</sup> leak from the non-mitochondrial Ca<sup>2+</sup> stores in permeabilized A7r5 cells. Cell Calcium **29**, 111–116
- 26 Shoshan-Barmatz, V., Zhang, G. H., Garretson, L. and Kraus-Friedmann, N. (1990) Distinct ryanodine- and inositol 1,4,5-trisphosphate-binding sites in hepatic microsomes. Biochem. J. 268, 699–705
- 27 Bazotte, R. B., Pereira, B., Higham, S., Shoshan-Barmatz, V. and Kraus-Friedmann, N. (1991) Effects of ryanodine on calcium sequestration in the rat liver. Biochem. Pharmacol. 4, 1799–1803
- 28 McNulty, T. J. and Taylor, C. W. (1993) Caffeine-stimulated Ca<sup>2+</sup> release from the intracellular stores of hepatocytes is not mediated by ryanodine receptors. Biochem. J. **291**, 799–801
- 29 Lilly, L. B. and Gollan, J. L. (1995) Ryanodine-induced calcium release from hepatic microsomes and permeabilized hepatocytes. Am. J. Physiol. 268, G1017–G1024
- 30 Khoo, K. M., Han, M.-K., Park, J. B., Chae, S. W., Kim, U.-H., Lee, H. C., Bay, B. H. and Chang, C. F. (2000) Localization of the cyclic ADP-ribose-dependent calcium signaling pathway in hepatocyte nucleus. J. Biol. Chem. **275**, 24807–24817
- 31 Giannini, G., Conti, A., Mammarella, S., Scrobogna, M. and Sorrentino, V. (1995) The ryanodine receptor/calcium channel genes are widely and differentially expressed in murine brain and peripheral tissues. J. Cell Biol. **128**, 893–904
- 32 Chen, S. R. W., Li, X., Ebisawa, K. and Zhang, L. (1997) Functional characterization of the recombinant type 3 Ca<sup>2+</sup> release channel (ryanodine receptor) expressed in HEK293 cells. J. Biol. Chem. **272**, 24234–24236
- Palade, P., Dettbarn, C., Alderson, B. and Volpe, P. (1989) Pharmacologic differentiation between inositol-1,4,5-trisphosphate-induced Ca<sup>2+</sup> release and Ca<sup>2+</sup> or caffeine-induced Ca<sup>2+</sup> release from intracellular membrane systems. Mol. Pharmacol. 36, 673–680
- 34 Pyne, S. and Pyne, N. J. (2000) Sphingosine 1-phosphate signalling in mammalian cells. Biochem. J. **349**, 385–402
- 35 Genazzani, A. A. and Galione, A. (1996) Nicotinic acid-adenine dinucleotide phosphate mobilizes Ca<sup>2+</sup> from a thapsigargin-insensitive pool. Biochem. J. **315**, 721-725
- 36 Bak, J., White, P., Timár, G., Missiaen, L., Genazzani, A. A. and Galione, A. (1999) Nicotinic acid adenine dinucleotide phosphate triggers Ca<sup>2+</sup> release from brain microsomes. Curr. Biol. 9, 751–754
- 37 Marshall, I. C. B. and Taylor, C. W. (1994) Two calcium-binding sites mediate the interconversion of liver inositol 1,4,5-trisphosphate receptors between three conformational states. Biochem. J. **301**, 591–598
- 38 Lee, H. C. (1993) Potentiation of calcium- and caffeine-induced calcium release by cyclic ADP ribose. J. Biol. Chem. 268, 293–299