Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2002 Apr 1;363(Pt 1):137–145. doi: 10.1042/0264-6021:3630137

Glycosylation and epitope mapping of the 5T4 glycoprotein oncofoetal antigen.

David M Shaw 1, Andrew M Woods 1, Kevin A Myers 1, Caroline Westwater 1, Veena Rahi-Saund 1, Michael J Davies 1, David V Renouf 1, Elizabeth F Hounsell 1, Peter L Stern 1
PMCID: PMC1222460  PMID: 11903056

Abstract

The human 5T4 oncofoetal antigen is a focus for development of several antibody-directed therapies on the basis of the murine monoclonal antibody against 5T4 (mAb5T4), which recognizes a conformational epitope. 5T4 molecules are highly N-glycosylated transmembrane glycoproteins whose extracellular domain contains two regions of leucine-rich repeats (LRRs) and associated flanking regions, separated by an intervening hydrophilic sequence. Using a series of deletion and mutated cDNA constructs as well as chimaeras with the murine homologue, we have mapped the mAb5T4 epitope to the more membrane-proximal LRR2 or its flanking region. Analysis of the glycosylation of the seven consensus Asp-Xaa-Ser/Thr sites was consistent with all of the sites being glycosylated. A combination of two high-mannose chains (predominantly octasaccharide) and five mostly sialylated bi-, tri- and tetra-antennary complex chains with minor quantities of core fucose were detected. The two glycosylation sites, which are the most likely to have predominantly high-mannose chains, are in the only two regions that show significant differences between the human and the 81% identical mouse sequence. A site-directed mutation, which abolished glycosylation at one of these sites (position 192), did not alter antigenicity. The other, which is nearest to the N-terminus in the human, has an Asn-Leu-Thr to Asn-Leu-Leu conversion in the mouse, so cannot be glycosylated in the latter species. The large complex glycosylation at the other sites is likely to influence the antigenicity and tertiary structure generating the 5T4 epitope.

Full Text

The Full Text of this article is available as a PDF (235.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ali A., Langdon J., Stern P., Partridge M. The pattern of expression of the 5T4 oncofoetal antigen on normal, dysplastic and malignant oral mucosa. Oral Oncol. 2001 Jan;37(1):57–64. doi: 10.1016/s1368-8375(00)00057-9. [DOI] [PubMed] [Google Scholar]
  2. Awan Abida, Lucic Melinda R., Shaw David M., Sheppard Freda, Westwater Caroline, Lyons Steve A., Stern Peter L. 5T4 interacts with TIP-2/GIPC, a PDZ protein, with implications for metastasis. Biochem Biophys Res Commun. 2002 Jan 25;290(3):1030–1036. doi: 10.1006/bbrc.2001.6288. [DOI] [PubMed] [Google Scholar]
  3. Bigge J. C., Patel T. P., Bruce J. A., Goulding P. N., Charles S. M., Parekh R. B. Nonselective and efficient fluorescent labeling of glycans using 2-amino benzamide and anthranilic acid. Anal Biochem. 1995 Sep 20;230(2):229–238. doi: 10.1006/abio.1995.1468. [DOI] [PubMed] [Google Scholar]
  4. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  5. Browne C. A., Bennett H. P., Solomon S. The isolation of peptides by high-performance liquid chromatography using predicted elution positions. Anal Biochem. 1982 Jul 15;124(1):201–208. doi: 10.1016/0003-2697(82)90238-x. [DOI] [PubMed] [Google Scholar]
  6. Carsberg C. J., Myers K. A., Evans G. S., Allen T. D., Stern P. L. Metastasis-associated 5T4 oncofoetal antigen is concentrated at microvillus projections of the plasma membrane. J Cell Sci. 1995 Aug;108(Pt 8):2905–2916. doi: 10.1242/jcs.108.8.2905. [DOI] [PubMed] [Google Scholar]
  7. Carsberg C. J., Myers K. A., Stern P. L. Metastasis-associated 5T4 antigen disrupts cell-cell contacts and induces cellular motility in epithelial cells. Int J Cancer. 1996 Sep 27;68(1):84–92. doi: 10.1002/(SICI)1097-0215(19960927)68:1<84::AID-IJC15>3.0.CO;2-6. [DOI] [PubMed] [Google Scholar]
  8. Davies M. J., Hounsell E. F. HPLC and HPAEC of oligosaccharides and glycopeptides. Methods Mol Biol. 1998;76:79–100. doi: 10.1385/0-89603-355-4:79. [DOI] [PubMed] [Google Scholar]
  9. Drickamer K., Taylor M. E. Evolving views of protein glycosylation. Trends Biochem Sci. 1998 Sep;23(9):321–324. doi: 10.1016/s0968-0004(98)01246-8. [DOI] [PubMed] [Google Scholar]
  10. Evdokimov A. G., Anderson D. E., Routzahn K. M., Waugh D. S. Unusual molecular architecture of the Yersinia pestis cytotoxin YopM: a leucine-rich repeat protein with the shortest repeating unit. J Mol Biol. 2001 Sep 28;312(4):807–821. doi: 10.1006/jmbi.2001.4973. [DOI] [PubMed] [Google Scholar]
  11. Forsberg G., Ohlsson L., Brodin T., Björk P., Lando P. A., Shaw D., Stern P. L., Dohlsten M. Therapy of human non-small-cell lung carcinoma using antibody targeting of a modified superantigen. Br J Cancer. 2001 Jul 6;85(1):129–136. doi: 10.1054/bjoc.2001.1891. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hillig R. C., Renault L., Vetter I. R., Drell T., 4th, Wittinghofer A., Becker J. The crystal structure of rna1p: a new fold for a GTPase-activating protein. Mol Cell. 1999 Jun;3(6):781–791. doi: 10.1016/s1097-2765(01)80010-1. [DOI] [PubMed] [Google Scholar]
  13. Hole N., Stern P. L. A 72 kD trophoblast glycoprotein defined by a monoclonal antibody. Br J Cancer. 1988 Mar;57(3):239–246. doi: 10.1038/bjc.1988.53. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hole N., Stern P. L. Isolation and characterization of 5T4, a tumour-associated antigen. Int J Cancer. 1990 Jan 15;45(1):179–184. doi: 10.1002/ijc.2910450132. [DOI] [PubMed] [Google Scholar]
  15. Hounsell E. F., Young M., Davies M. J. Glycoprotein changes in tumours: a renaissance in clinical applications. Clin Sci (Lond) 1997 Oct;93(4):287–293. doi: 10.1042/cs0930287. [DOI] [PubMed] [Google Scholar]
  16. Janosi J. B., Ramsland P. A., Mott M. R., Firth S. M., Baxter R. C., Delhanty P. J. The acid-labile subunit of the serum insulin-like growth factor-binding protein complexes. Structural determination by molecular modeling and electron microscopy. J Biol Chem. 1999 Aug 13;274(33):23328–23332. doi: 10.1074/jbc.274.33.23328. [DOI] [PubMed] [Google Scholar]
  17. Kajava A. V., Vassart G., Wodak S. J. Modeling of the three-dimensional structure of proteins with the typical leucine-rich repeats. Structure. 1995 Sep 15;3(9):867–877. doi: 10.1016/S0969-2126(01)00222-2. [DOI] [PubMed] [Google Scholar]
  18. King K. W., Sheppard F. C., Westwater C., Stern P. L., Myers K. A. Organisation of the mouse and human 5T4 oncofoetal leucine-rich glycoprotein genes and expression in foetal and adult murine tissues. Biochim Biophys Acta. 1999 Jun 9;1445(3):257–270. doi: 10.1016/s0167-4781(99)00055-x. [DOI] [PubMed] [Google Scholar]
  19. Kobe B., Deisenhofer J. Crystal structure of porcine ribonuclease inhibitor, a protein with leucine-rich repeats. Nature. 1993 Dec 23;366(6457):751–756. doi: 10.1038/366751a0. [DOI] [PubMed] [Google Scholar]
  20. Kobe B., Deisenhofer J. Proteins with leucine-rich repeats. Curr Opin Struct Biol. 1995 Jun;5(3):409–416. doi: 10.1016/0959-440x(95)80105-7. [DOI] [PubMed] [Google Scholar]
  21. Kobe B., Deisenhofer J. The leucine-rich repeat: a versatile binding motif. Trends Biochem Sci. 1994 Oct;19(10):415–421. doi: 10.1016/0968-0004(94)90090-6. [DOI] [PubMed] [Google Scholar]
  22. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  23. Liker E., Fernandez E., Izaurralde E., Conti E. The structure of the mRNA export factor TAP reveals a cis arrangement of a non-canonical RNP domain and an LRR domain. EMBO J. 2000 Nov 1;19(21):5587–5598. doi: 10.1093/emboj/19.21.5587. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Mirazimi A., Svensson L. Carbohydrates facilitate correct disulfide bond formation and folding of rotavirus VP7. J Virol. 1998 May;72(5):3887–3892. doi: 10.1128/jvi.72.5.3887-3892.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Mulder W. M., Stern P. L., Stukart M. J., de Windt E., Butzelaar R. M., Meijer S., Adér H. J., Claessen A. M., Vermorken J. B., Meijer C. J. Low intercellular adhesion molecule 1 and high 5T4 expression on tumor cells correlate with reduced disease-free survival in colorectal carcinoma patients. Clin Cancer Res. 1997 Nov;3(11):1923–1930. [PubMed] [Google Scholar]
  26. Myers K. A., Rahi-Saund V., Davison M. D., Young J. A., Cheater A. J., Stern P. L. Isolation of a cDNA encoding 5T4 oncofetal trophoblast glycoprotein. An antigen associated with metastasis contains leucine-rich repeats. J Biol Chem. 1994 Mar 25;269(12):9319–9324. [PubMed] [Google Scholar]
  27. Prime S., Merry T. Exoglycosidase sequencing of N-linked glycans by the reagent array analysis method (RAAM). Methods Mol Biol. 1998;76:53–69. doi: 10.1385/0-89603-355-4:53. [DOI] [PubMed] [Google Scholar]
  28. Smith K. D., Davies M. J., Bailey D., Renouf D. V., Hounsell E. F. Analysis of the glycosylation patterns of the extracellular domain of the epidermal growth factor receptor expressed in Chinese hamster ovary fibroblasts. Growth Factors. 1996;13(1-2):121–132. doi: 10.3109/08977199609034572. [DOI] [PubMed] [Google Scholar]
  29. Southall P. J., Boxer G. M., Bagshawe K. D., Hole N., Bromley M., Stern P. L. Immunohistological distribution of 5T4 antigen in normal and malignant tissues. Br J Cancer. 1990 Jan;61(1):89–95. doi: 10.1038/bjc.1990.20. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Starzynska T., Marsh P. J., Schofield P. F., Roberts S. A., Myers K. A., Stern P. L. Prognostic significance of 5T4 oncofetal antigen expression in colorectal carcinoma. Br J Cancer. 1994 May;69(5):899–902. doi: 10.1038/bjc.1994.173. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Starzynska T., Rahi V., Stern P. L. The expression of 5T4 antigen in colorectal and gastric carcinoma. Br J Cancer. 1992 Nov;66(5):867–869. doi: 10.1038/bjc.1992.375. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Starzynska T., Wiechowska-Kozlowska A., Marlicz K., Bromley M., Roberts S. A., Lawniczak M., Kolodziej B., Zyluk A., Stern P. L. 5T4 oncofetal antigen in gastric carcinoma and its clinical significance. Eur J Gastroenterol Hepatol. 1998 Jun;10(6):479–484. doi: 10.1097/00042737-199806000-00008. [DOI] [PubMed] [Google Scholar]
  33. Stern P. L., Beresford N., Thompson S., Johnson P. M., Webb P. D., Hole N. Characterization of the human trophoblast-leukocyte antigenic molecules defined by a monoclonal antibody. J Immunol. 1986 Sep 1;137(5):1604–1609. [PubMed] [Google Scholar]
  34. Towbin H., Gordon J. Immunoblotting and dot immunobinding--current status and outlook. J Immunol Methods. 1984 Sep 4;72(2):313–340. doi: 10.1016/0022-1759(84)90001-2. [DOI] [PubMed] [Google Scholar]
  35. Weitzhandler M., Pohl C., Rohrer J., Narayanan L., Slingsby R., Avdalovic N. Eliminating amino acid and peptide interference in high-performance anion-exchange pulsed amperometric detection glycoprotein monosaccharide analysis. Anal Biochem. 1996 Oct 1;241(1):128–134. doi: 10.1006/abio.1996.0386. [DOI] [PubMed] [Google Scholar]
  36. Weitzhandler M., Slingsby R., Jagodzinski J., Pohl C., Narayanan L., Avdalovic N. Eliminating monosaccharide peak tailing in high pH anion-exchange chromatography with pulsed amperometric detection. Anal Biochem. 1996 Oct 1;241(1):135–136. doi: 10.1006/abio.1996.0387. [DOI] [PubMed] [Google Scholar]
  37. Wong N. K., Kanu N., Thandrayen N., Rademaker G. J., Baldwin C. I., Renouf D. V., Hounsell E. F. Microassay analyses of protein glycosylation. Mol Biotechnol. 2000 Feb;14(2):147–155. doi: 10.1385/MB:14:2:147. [DOI] [PubMed] [Google Scholar]
  38. Wrigley E., McGown A.T., Rennison J., Swindell R., Crowther D., Starzynska T., Stern P.L. 5T4 oncofetal antigen expression in ovarian carcinoma. Int J Gynecol Cancer. 1995 Jul;5(4):269–274. doi: 10.1046/j.1525-1438.1995.05040269.x. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES