Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2002 Apr 15;363(Pt 2):341–346. doi: 10.1042/0264-6021:3630341

Thermodynamics of the ligandin function of human class Alpha glutathione transferase A1-1: energetics of organic anion ligand binding.

Yasien Sayed 1, Judith A T Hornby 1, Marimar Lopez 1, Heini Dirr 1
PMCID: PMC1222484  PMID: 11931663

Abstract

In addition to their catalytic functions, cytosolic glutathioneS-transferases (GSTs) are a major reserve of high-capacity binding proteins for a large variety of physiological and exogenous non-substrate compounds. This ligandin function has implicated GSTs in numerous ligand-uptake, -transport and -storage processes. The binding of non-substrate ligands to GSTs can inhibit catalysis. In the present study, the energetics of the binding of the non-substrate ligand 8-anilino-1-naphthalene sulphonate (ANS) to wild-type human class Alpha GST with two type-1 subunits (hGSTA1-1) and its DeltaPhe-222 deletion mutant were studied by isothermal titration calorimetry. The stoichiometry of binding to both proteins is one ANS molecule per GST subunit with a greater affinity for the wild-type (K(d)=65 microM) than for the DeltaPhe-222 mutant (K(d)=105 microM). ANS binding to the wild-type protein is enthalpically driven and it is characterized by a large negative heat-capacity change, DeltaC(p). The negative DeltaC(p) value for ANS binding indicates a specific interface with a significant hydrophobic component in the protein-ligand complex. The negatively charged sulphonate group of the anionic ligand is apparently not a major determinant of its binding. Phe-222 contributes to the binding affinity for ANS and the hydrophobicity of the binding site.

Full Text

The Full Text of this article is available as a PDF (147.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Armstrong R. N. Glutathione S-transferases: reaction mechanism, structure, and function. Chem Res Toxicol. 1991 Mar-Apr;4(2):131–140. doi: 10.1021/tx00020a001. [DOI] [PubMed] [Google Scholar]
  2. Bhargava M. M., Dasgupta A. Binding of sulfobromophthalein to rat and human ligandins: characterization of a binding-site peptide. Biochim Biophys Acta. 1988 Aug 10;955(3):296–300. doi: 10.1016/0167-4838(88)90207-5. [DOI] [PubMed] [Google Scholar]
  3. Bhargava M. M., Ohmi N., Listowsky I., Arias I. M. Structural, catalytic, binding, and immunological properties associated with each of the two subunits of rat liver ligandin. J Biol Chem. 1980 Jan 25;255(2):718–723. [PubMed] [Google Scholar]
  4. Bhargava M. M., Ohmi N., Listowsky I., Arias I. M. Subunit composition, organic anion binding, catalytic and immunological properties of ligandin from rat testis. J Biol Chem. 1980 Jan 25;255(2):724–727. [PubMed] [Google Scholar]
  5. Bico P., Erhardt J., Kaplan W., Dirr H. Porcine class pi glutathione S-transferase: anionic ligand binding and conformational analysis. Biochim Biophys Acta. 1995 Mar 15;1247(2):225–230. doi: 10.1016/0167-4838(94)00236-a. [DOI] [PubMed] [Google Scholar]
  6. Boyer T. D. Covalent labeling of the nonsubstrate ligand-binding site of glutathione S-transferases with bilirubin-Woodward's reagent K. J Biol Chem. 1986 Apr 25;261(12):5363–5367. [PubMed] [Google Scholar]
  7. Brokx R. D., Lopez M. M., Vogel H. J., Makhatadze G. I. Energetics of target peptide binding by calmodulin reveals different modes of binding. J Biol Chem. 2001 Jan 29;276(17):14083–14091. doi: 10.1074/jbc.M011026200. [DOI] [PubMed] [Google Scholar]
  8. Cameron A. D., Sinning I., L'Hermite G., Olin B., Board P. G., Mannervik B., Jones T. A. Structural analysis of human alpha-class glutathione transferase A1-1 in the apo-form and in complexes with ethacrynic acid and its glutathione conjugate. Structure. 1995 Jul 15;3(7):717–727. doi: 10.1016/s0969-2126(01)00206-4. [DOI] [PubMed] [Google Scholar]
  9. Coles B., Ketterer B. The role of glutathione and glutathione transferases in chemical carcinogenesis. Crit Rev Biochem Mol Biol. 1990;25(1):47–70. doi: 10.3109/10409239009090605. [DOI] [PubMed] [Google Scholar]
  10. Dirr H. W., Wallace L. A. Role of the C-terminal helix 9 in the stability and ligandin function of class alpha glutathione transferase A1-1. Biochemistry. 1999 Nov 23;38(47):15631–15640. doi: 10.1021/bi991179x. [DOI] [PubMed] [Google Scholar]
  11. Dirr H., Reinemer P., Huber R. Refined crystal structure of porcine class Pi glutathione S-transferase (pGST P1-1) at 2.1 A resolution. J Mol Biol. 1994 Oct 14;243(1):72–92. doi: 10.1006/jmbi.1994.1631. [DOI] [PubMed] [Google Scholar]
  12. Fukada H., Takahashi K. Enthalpy and heat capacity changes for the proton dissociation of various buffer components in 0.1 M potassium chloride. Proteins. 1998 Nov 1;33(2):159–166. [PubMed] [Google Scholar]
  13. Habig W. H., Jakoby W. B. Assays for differentiation of glutathione S-transferases. Methods Enzymol. 1981;77:398–405. doi: 10.1016/s0076-6879(81)77053-8. [DOI] [PubMed] [Google Scholar]
  14. Hayes J. D., Pulford D. J. The glutathione S-transferase supergene family: regulation of GST and the contribution of the isoenzymes to cancer chemoprotection and drug resistance. Crit Rev Biochem Mol Biol. 1995;30(6):445–600. doi: 10.3109/10409239509083491. [DOI] [PubMed] [Google Scholar]
  15. Hornby J. A., Luo J. K., Stevens J. M., Wallace L. A., Kaplan W., Armstrong R. N., Dirr H. W. Equilibrium folding of dimeric class mu glutathione transferases involves a stable monomeric intermediate. Biochemistry. 2000 Oct 10;39(40):12336–12344. doi: 10.1021/bi000176d. [DOI] [PubMed] [Google Scholar]
  16. Ji X., Blaszczyk J., Xiao B., O'Donnell R., Hu X., Herzog C., Singh S. V., Zimniak P. Structure and function of residue 104 and water molecules in the xenobiotic substrate-binding site in human glutathione S-transferase P1-1. Biochemistry. 1999 Aug 10;38(32):10231–10238. doi: 10.1021/bi990668u. [DOI] [PubMed] [Google Scholar]
  17. Ji X., Tordova M., O'Donnell R., Parsons J. F., Hayden J. B., Gilliland G. L., Zimniak P. Structure and function of the xenobiotic substrate-binding site and location of a potential non-substrate-binding site in a class pi glutathione S-transferase. Biochemistry. 1997 Aug 12;36(32):9690–9702. doi: 10.1021/bi970805s. [DOI] [PubMed] [Google Scholar]
  18. Ji X., von Rosenvinge E. C., Johnson W. W., Armstrong R. N., Gilliland G. L. Location of a potential transport binding site in a sigma class glutathione transferase by x-ray crystallography. Proc Natl Acad Sci U S A. 1996 Aug 6;93(16):8208–8213. doi: 10.1073/pnas.93.16.8208. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kirk W. R., Kurian E., Prendergast F. G. Characterization of the sources of protein-ligand affinity: 1-sulfonato-8-(1')anilinonaphthalene binding to intestinal fatty acid binding protein. Biophys J. 1996 Jan;70(1):69–83. doi: 10.1016/S0006-3495(96)79592-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Ladbury J. E. Counting the calories to stay in the groove. Structure. 1995 Jul 15;3(7):635–639. doi: 10.1016/s0969-2126(01)00197-6. [DOI] [PubMed] [Google Scholar]
  21. Ladbury J. E., Wright J. G., Sturtevant J. M., Sigler P. B. A thermodynamic study of the trp repressor-operator interaction. J Mol Biol. 1994 May 20;238(5):669–681. doi: 10.1006/jmbi.1994.1328. [DOI] [PubMed] [Google Scholar]
  22. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  23. Lawrence R. A., Burk R. F. Glutathione peroxidase activity in selenium-deficient rat liver. Biochem Biophys Res Commun. 1976 Aug 23;71(4):952–958. doi: 10.1016/0006-291x(76)90747-6. [DOI] [PubMed] [Google Scholar]
  24. Loladze V. V., Ermolenko D. N., Makhatadze G. I. Heat capacity changes upon burial of polar and nonpolar groups in proteins. Protein Sci. 2001 Jul;10(7):1343–1352. doi: 10.1110/ps.370101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Lopez M. M., Yutani K., Makhatadze G. I. Interactions of the major cold shock protein of Bacillus subtilis CspB with single-stranded DNA templates of different base composition. J Biol Chem. 1999 Nov 19;274(47):33601–33608. doi: 10.1074/jbc.274.47.33601. [DOI] [PubMed] [Google Scholar]
  26. Makhatadze G. I., Privalov P. L. Energetics of protein structure. Adv Protein Chem. 1995;47:307–425. doi: 10.1016/s0065-3233(08)60548-3. [DOI] [PubMed] [Google Scholar]
  27. Makhatadze G. I., Privalov P. L. Heat capacity of proteins. I. Partial molar heat capacity of individual amino acid residues in aqueous solution: hydration effect. J Mol Biol. 1990 May 20;213(2):375–384. doi: 10.1016/S0022-2836(05)80197-4. [DOI] [PubMed] [Google Scholar]
  28. Matulis D., Lovrien R. 1-Anilino-8-naphthalene sulfonate anion-protein binding depends primarily on ion pair formation. Biophys J. 1998 Jan;74(1):422–429. doi: 10.1016/S0006-3495(98)77799-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. McCarthy R. M., Farmer P., Sheehan D. Binding of 2-hydroxy-5-nitrobenzyl alcohol to rat alpha class glutathione S-transferases; evidence for binding at tryptophan 21. Biochim Biophys Acta. 1996 Apr 16;1293(2):185–190. doi: 10.1016/0167-4838(95)00221-9. [DOI] [PubMed] [Google Scholar]
  30. McTigue M. A., Williams D. R., Tainer J. A. Crystal structures of a schistosomal drug and vaccine target: glutathione S-transferase from Schistosoma japonica and its complex with the leading antischistosomal drug praziquantel. J Mol Biol. 1995 Feb 10;246(1):21–27. doi: 10.1006/jmbi.1994.0061. [DOI] [PubMed] [Google Scholar]
  31. Nishihira J., Ishibashi T., Sakai M., Nishi S., Kondo H., Makita A. Identification of the fatty acid binding site on glutathione S-transferase P. Biochem Biophys Res Commun. 1992 Nov 30;189(1):197–205. doi: 10.1016/0006-291x(92)91544-z. [DOI] [PubMed] [Google Scholar]
  32. Oakley A. J., Lo Bello M., Nuccetelli M., Mazzetti A. P., Parker M. W. The ligandin (non-substrate) binding site of human Pi class glutathione transferase is located in the electrophile binding site (H-site). J Mol Biol. 1999 Aug 27;291(4):913–926. doi: 10.1006/jmbi.1999.3029. [DOI] [PubMed] [Google Scholar]
  33. Ory J. J., Banaszak L. J. Studies of the ligand binding reaction of adipocyte lipid binding protein using the fluorescent probe 1, 8-anilinonaphthalene-8-sulfonate. Biophys J. 1999 Aug;77(2):1107–1116. doi: 10.1016/S0006-3495(99)76961-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Prade L., Huber R., Manoharan T. H., Fahl W. E., Reuter W. Structures of class pi glutathione S-transferase from human placenta in complex with substrate, transition-state analogue and inhibitor. Structure. 1997 Oct 15;5(10):1287–1295. doi: 10.1016/s0969-2126(97)00281-5. [DOI] [PubMed] [Google Scholar]
  35. Privalov P. L., Makhatadze G. I. Heat capacity of proteins. II. Partial molar heat capacity of the unfolded polypeptide chain of proteins: protein unfolding effects. J Mol Biol. 1990 May 20;213(2):385–391. doi: 10.1016/S0022-2836(05)80198-6. [DOI] [PubMed] [Google Scholar]
  36. Reinemer P., Dirr H. W., Ladenstein R., Schäffer J., Gallay O., Huber R. The three-dimensional structure of class pi glutathione S-transferase in complex with glutathione sulfonate at 2.3 A resolution. EMBO J. 1991 Aug;10(8):1997–2005. doi: 10.1002/j.1460-2075.1991.tb07729.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Sayed Y., Wallace L. A., Dirr H. W. The hydrophobic lock-and-key intersubunit motif of glutathione transferase A1-1: implications for catalysis, ligandin function and stability. FEBS Lett. 2000 Jan 14;465(2-3):169–172. doi: 10.1016/s0014-5793(99)01747-0. [DOI] [PubMed] [Google Scholar]
  38. Sinning I., Kleywegt G. J., Cowan S. W., Reinemer P., Dirr H. W., Huber R., Gilliland G. L., Armstrong R. N., Ji X., Board P. G. Structure determination and refinement of human alpha class glutathione transferase A1-1, and a comparison with the Mu and Pi class enzymes. J Mol Biol. 1993 Jul 5;232(1):192–212. doi: 10.1006/jmbi.1993.1376. [DOI] [PubMed] [Google Scholar]
  39. Sluis-Cremer N., Naidoo N. N., Kaplan W. H., Manoharan T. H., Fahl W. E., Dirr H. W. Determination of a binding site for a non-substrate ligand in mammalian cytosolic glutathione S-transferases by means of fluorescence-resonance energy transfer. Eur J Biochem. 1996 Oct 15;241(2):484–488. doi: 10.1111/j.1432-1033.1996.00484.x. [DOI] [PubMed] [Google Scholar]
  40. Sluis-Cremer N., Wallace L., Burke J., Stevens J., Dirr H. Aflatoxin B1 and sulphobromophthalein binding to the dimeric human glutathione S-transferase A1-1: a fluorescence spectroscopic analysis. Eur J Biochem. 1998 Oct 15;257(2):434–442. doi: 10.1046/j.1432-1327.1998.2570434.x. [DOI] [PubMed] [Google Scholar]
  41. Stenberg G., Björnestedt R., Mannervik B. Heterologous expression of recombinant human glutathione transferase A1-1 from a hepatoma cell line. Protein Expr Purif. 1992 Feb;3(1):80–84. doi: 10.1016/1046-5928(92)90060-a. [DOI] [PubMed] [Google Scholar]
  42. Stryer L. The interaction of a naphthalene dye with apomyoglobin and apohemoglobin. A fluorescent probe of non-polar binding sites. J Mol Biol. 1965 Sep;13(2):482–495. doi: 10.1016/s0022-2836(65)80111-5. [DOI] [PubMed] [Google Scholar]
  43. Tsuchida S., Sato K. Glutathione transferases and cancer. Crit Rev Biochem Mol Biol. 1992;27(4-5):337–384. doi: 10.3109/10409239209082566. [DOI] [PubMed] [Google Scholar]
  44. Vargo M. A., Colman R. F. Affinity labeling of rat glutathione S-transferase isozyme 1-1 by 17beta -iodoacetoxy-estradiol-3-sulfate. J Biol Chem. 2000 Oct 12;276(3):2031–2036. doi: 10.1074/jbc.M008212200. [DOI] [PubMed] [Google Scholar]
  45. Wallace L. A., Dirr H. W. Folding and assembly of dimeric human glutathione transferase A1-1. Biochemistry. 1999 Dec 14;38(50):16686–16694. doi: 10.1021/bi991239z. [DOI] [PubMed] [Google Scholar]
  46. Wallace L. A., Sluis-Cremer N., Dirr H. W. Equilibrium and kinetic unfolding properties of dimeric human glutathione transferase A1-1. Biochemistry. 1998 Apr 14;37(15):5320–5328. doi: 10.1021/bi972936z. [DOI] [PubMed] [Google Scholar]
  47. Waxman D. J. Glutathione S-transferases: role in alkylating agent resistance and possible target for modulation chemotherapy--a review. Cancer Res. 1990 Oct 15;50(20):6449–6454. [PubMed] [Google Scholar]
  48. Weber L. D., Tulinsky A., Johnson J. D., El-Bayoumi M. A. Expression of functionality of alpha-chymotrypsin. The structure of a fluorescent probe--alpha-chymotrypsin complex and the nature of its pH dependence. Biochemistry. 1979 Apr 3;18(7):1297–1303. doi: 10.1021/bi00574a028. [DOI] [PubMed] [Google Scholar]
  49. Winder A. F., Gent W. L. Correction of light-scattering errors in spectrophotometric protein determinations. Biopolymers. 1971;10(7):1243–1251. doi: 10.1002/bip.360100713. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES