Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2002 Jul 15;365(Pt 2):379–389. doi: 10.1042/BJ20011647

Function of the 90-loop (Thr90-Glu100) region of staphylokinase in plasminogen activation probed through site-directed mutagenesis and loop deletion.

Govindan Rajamohan 1, Monika Dahiya 1, Shekhar C Mande 1, Kanak L Dikshit 1
PMCID: PMC1222684  PMID: 11936951

Abstract

Staphylokinsae (SAK) forms a bimolecular complex with human plasmin(ogen) and changes its substrate specificity by exposing new exosites that enhances accession of substrate plasminogen (PG) to the plasmin (Pm) active site. Protein modelling studies indicated the crucial role of a loop in SAK (SAK 90-loop; Thr(90)-Glu(100)) for the docking of the substrate PG to the SAK-Pm complex. Function of SAK 90-loop was studied by site-directed mutagenesis and loop deletion. Deletion of nine amino acid residues (Tyr(92)-Glu(100)) from the SAK 90-loop, resulted in approximately 60% reduction in the PG activation, but it retained the ability to generate an active site within the complex of loop mutant of SAK (SAKDelta90) and Pm. The preformed activator complex of SAKDelta90 with Pm, however, displayed a 50-60% reduction in substrate PG activation that remained unaffected in the presence of kringle domains (K1+K2+K3+K4) of PG, whereas PG activation by SAK-Pm complex displayed approximately 50% reduction in the presence of kringles, suggesting the involvement of the kringle domains in modulating the PG activation by native SAK but not by SAKDelta90. Lysine residues (Lys(94), Lys(96), Lys(97) and Lys(98)) of the SAK 90-loop were individually mutated into alanine and, among these four SAK loop mutants, SAK(K97A) and SAK(K98A) exhibited specific activities about one-third and one-quarter respectively of the native SAK. The kinetic parameters of PG activation of their 1:1 complex with Pm indicated that the K(m) values of PG towards the activator complex of these two SAK mutants were 4-6-fold higher, suggesting the decreased accessibility of the substrate PG to the activator complex formed by these SAK mutants. These results demonstrated the involvement of the Lys(97) and Lys(98) residues of the SAK 90-loop in assisting the interaction with substrate PG. These interactions of SAK-Pm activator complex via the SAK 90-loop may provide additional anchorage site(s) to the substrate PG that, in turn, may promote the overall process of SAK-mediated PG activation.

Full Text

The Full Text of this article is available as a PDF (379.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arai K., Madoiwa S., Mimuro J., Asakura S., Matsuda M., Sako T., Sakata Y. Role of the kringle domain in plasminogen activation with staphylokinase. J Biochem. 1998 Jan;123(1):71–77. doi: 10.1093/oxfordjournals.jbchem.a021918. [DOI] [PubMed] [Google Scholar]
  2. Chang Y., Mochalkin I., McCance S. G., Cheng B., Tulinsky A., Castellino F. J. Structure and ligand binding determinants of the recombinant kringle 5 domain of human plasminogen. Biochemistry. 1998 Mar 10;37(10):3258–3271. doi: 10.1021/bi972284e. [DOI] [PubMed] [Google Scholar]
  3. Chase T., Jr, Shaw E. Comparison of the esterase activities of trypsin, plasmin, and thrombin on guanidinobenzoate esters. Titration of the enzymes. Biochemistry. 1969 May;8(5):2212–2224. doi: 10.1021/bi00833a063. [DOI] [PubMed] [Google Scholar]
  4. Collen D., De Cock F., Stassen J. M. Comparative immunogenicity and thrombolytic properties toward arterial and venous thrombi of streptokinase and recombinant staphylokinase in baboons. Circulation. 1993 Mar;87(3):996–1006. doi: 10.1161/01.cir.87.3.996. [DOI] [PubMed] [Google Scholar]
  5. Collen D., Lijnen H. R. Staphylokinase, a fibrin-specific plasminogen activator with therapeutic potential? Blood. 1994 Aug 1;84(3):680–686. [PubMed] [Google Scholar]
  6. Collen D. Staphylokinase: a potent, uniquely fibrin-selective thrombolytic agent. Nat Med. 1998 Mar;4(3):279–284. doi: 10.1038/nm0398-279. [DOI] [PubMed] [Google Scholar]
  7. Collen D., Van Hoef B., Schlott B., Hartmann M., Gührs K. H., Lijnen H. R. Mechanisms of activation of mammalian plasma fibrinolytic systems with streptokinase and with recombinant staphylokinase. Eur J Biochem. 1993 Aug 15;216(1):307–314. doi: 10.1111/j.1432-1033.1993.tb18147.x. [DOI] [PubMed] [Google Scholar]
  8. Collen D., Van de Werf F. Coronary thrombolysis with recombinant staphylokinase in patients with evolving myocardial infarction. Circulation. 1993 Jun;87(6):1850–1853. doi: 10.1161/01.cir.87.6.1850. [DOI] [PubMed] [Google Scholar]
  9. Deutsch D. G., Mertz E. T. Plasminogen: purification from human plasma by affinity chromatography. Science. 1970 Dec 4;170(3962):1095–1096. doi: 10.1126/science.170.3962.1095. [DOI] [PubMed] [Google Scholar]
  10. Fraker P. J., Speck J. C., Jr Protein and cell membrane iodinations with a sparingly soluble chloroamide, 1,3,4,6-tetrachloro-3a,6a-diphrenylglycoluril. Biochem Biophys Res Commun. 1978 Feb 28;80(4):849–857. doi: 10.1016/0006-291x(78)91322-0. [DOI] [PubMed] [Google Scholar]
  11. Grella D. K., Castellino F. J. Activation of human plasminogen by staphylokinase. Direct evidence that preformed plasmin is necessary for activation to occur. Blood. 1997 Mar 1;89(5):1585–1589. [PubMed] [Google Scholar]
  12. Jackson K. W., Esmon N., Tang J. Streptokinase and staphylokinase. Methods Enzymol. 1981;80(Pt 100):387–394. doi: 10.1016/s0076-6879(81)80033-x. [DOI] [PubMed] [Google Scholar]
  13. Jespers L., Vanwetswinkel S., Lijnen H. R., Van Herzeele N., Van Hoef B., Demarsin E., Collen D., De Maeyer M. Structural and functional basis of plasminogen activation by staphylokinase. Thromb Haemost. 1999 Apr;81(4):479–485. [PubMed] [Google Scholar]
  14. Kim D. M., Lee S. J., Kim I. C., Kim S. T., Byun S. M. Asp41-His48 region of streptokinase is important in binding to a substrate plasminogen. Thromb Res. 2000 Jul 1;99(1):93–98. doi: 10.1016/s0049-3848(00)00225-5. [DOI] [PubMed] [Google Scholar]
  15. Lijnen H. R., De Cock F., Van Hoef B., Schlott B., Collen D. Characterization of the interaction between plasminogen and staphylokinase. Eur J Biochem. 1994 Aug 15;224(1):143–149. doi: 10.1111/j.1432-1033.1994.tb20005.x. [DOI] [PubMed] [Google Scholar]
  16. Lijnen H. R., Van Hoef B., Collen D. Interaction of staphylokinase with different molecular forms of plasminogen. Eur J Biochem. 1993 Jan 15;211(1-2):91–97. doi: 10.1111/j.1432-1033.1993.tb19873.x. [DOI] [PubMed] [Google Scholar]
  17. Lijnen H. R., Van Hoef B., De Cock F., Okada K., Ueshima S., Matsuo O., Collen D. On the mechanism of fibrin-specific plasminogen activation by staphylokinase. J Biol Chem. 1991 Jun 25;266(18):11826–11832. [PubMed] [Google Scholar]
  18. Nicholls A., Sharp K. A., Honig B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins. 1991;11(4):281–296. doi: 10.1002/prot.340110407. [DOI] [PubMed] [Google Scholar]
  19. Parry M. A., Fernandez-Catalan C., Bergner A., Huber R., Hopfner K. P., Schlott B., Gührs K. H., Bode W. The ternary microplasmin-staphylokinase-microplasmin complex is a proteinase-cofactor-substrate complex in action. Nat Struct Biol. 1998 Oct;5(10):917–923. doi: 10.1038/2359. [DOI] [PubMed] [Google Scholar]
  20. Parry M. A., Zhang X. C., Bode I. Molecular mechanisms of plasminogen activation: bacterial cofactors provide clues. Trends Biochem Sci. 2000 Feb;25(2):53–59. doi: 10.1016/s0968-0004(99)01521-2. [DOI] [PubMed] [Google Scholar]
  21. Pratap J., Kaur J., RajaMohan G., Singh D., Dikshit K. L. Role of N-terminal domain of streptokinase in protein transport. Biochem Biophys Res Commun. 1996 Oct 3;227(1):303–310. doi: 10.1006/bbrc.1996.1504. [DOI] [PubMed] [Google Scholar]
  22. Rabijns A., De Bondt H. L., De Ranter C. Three-dimensional structure of staphylokinase, a plasminogen activator with therapeutic potential. Nat Struct Biol. 1997 May;4(5):357–360. doi: 10.1038/nsb0597-357. [DOI] [PubMed] [Google Scholar]
  23. Rajamohan G., Dikshit K. L. Role of the N-terminal region of staphylokinase (SAK): evidence for the participation of the N-terminal region of SAK in the enzyme-substrate complex formation. FEBS Lett. 2000 Jun 2;474(2-3):151–158. doi: 10.1016/s0014-5793(00)01578-7. [DOI] [PubMed] [Google Scholar]
  24. Schlott B., Gührs K. H., Hartmann M., Röcker A., Collen D. NH2-terminal structural motifs in staphylokinase required for plasminogen activation. J Biol Chem. 1998 Aug 28;273(35):22346–22350. doi: 10.1074/jbc.273.35.22346. [DOI] [PubMed] [Google Scholar]
  25. Schlott B., Gührs K. H., Hartmann M., Röcker A., Collen D. Staphylokinase requires NH2-terminal proteolysis for plasminogen activation. J Biol Chem. 1997 Feb 28;272(9):6067–6072. doi: 10.1074/jbc.272.9.6067. [DOI] [PubMed] [Google Scholar]
  26. Schlott B., Hartmann M., Gührs K. H., Birch-Hirschfeid E., Pohl H. D., Vanderschueren S., Van de Werf F., Michoel A., Collen D., Behnke D. High yield production and purification of recombinant staphylokinase for thrombolytic therapy. Biotechnology (N Y) 1994 Feb;12(2):185–189. doi: 10.1038/nbt0294-185. [DOI] [PubMed] [Google Scholar]
  27. Shi G. Y., Wu H. L. Isolation and characterization of microplasminogen. A low molecular weight form of plasminogen. J Biol Chem. 1988 Nov 15;263(32):17071–17075. [PubMed] [Google Scholar]
  28. Shibata H., Nagaoka M., Sakai M., Sawada H., Watanabe T., Yokokura T. Kinetic studies on the plasminogen activation by the staphylokinase-plasmin complex. J Biochem. 1994 Apr;115(4):738–742. doi: 10.1093/oxfordjournals.jbchem.a124404. [DOI] [PubMed] [Google Scholar]
  29. Silence K., Hartmann M., Gührs K. H., Gase A., Schlott B., Collen D., Lijnen H. R. Structure-function relationships in staphylokinase as revealed by "clustered charge to alanine" mutagenesis. J Biol Chem. 1995 Nov 10;270(45):27192–27198. doi: 10.1074/jbc.270.45.27192. [DOI] [PubMed] [Google Scholar]
  30. Sugiyama N., Sasaki T., Iwamoto M., Abiko Y. Binding site of alpha 2-plasmin inhibitor to plasminogen. Biochim Biophys Acta. 1988 Jan 4;952(1):1–7. doi: 10.1016/0167-4838(88)90094-5. [DOI] [PubMed] [Google Scholar]
  31. Szarka S. J., Sihota E. G., Habibi H. R., Wong S. Staphylokinase as a plasminogen activator component in recombinant fusion proteins. Appl Environ Microbiol. 1999 Feb;65(2):506–513. doi: 10.1128/aem.65.2.506-513.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Trieu T., Behnke D., Gerlach D., Tang J. Activation of human plasminogen by recombinant staphylokinase. Methods Enzymol. 1993;223:156–167. doi: 10.1016/0076-6879(93)23043-m. [DOI] [PubMed] [Google Scholar]
  33. Ueshima S., Silence K., Collen D., Lijnen H. R. Molecular conversions of recombinant staphylokinase during plasminogen activation in purified systems and in human plasma. Thromb Haemost. 1993 Sep 1;70(3):495–499. [PubMed] [Google Scholar]
  34. Vanderschueren S., Barrios L., Kerdsinchai P., Van den Heuvel P., Hermans L., Vrolix M., De Man F., Benit E., Muyldermans L., Collen D. A randomized trial of recombinant staphylokinase versus alteplase for coronary artery patency in acute myocardial infarction. The STAR Trial Group. Circulation. 1995 Oct 15;92(8):2044–2049. doi: 10.1161/01.cir.92.8.2044. [DOI] [PubMed] [Google Scholar]
  35. Vanderschueren S., Collen D., van de Werf F. A pilot study on bolus administration of recombinant staphylokinase for coronary artery thrombolysis. Thromb Haemost. 1996 Oct;76(4):541–544. [PubMed] [Google Scholar]
  36. Wohl R. C., Summaria L., Robbins K. C. Kinetics of activation of human plasminogen by different activator species at pH 7.4 and 37 degrees C. J Biol Chem. 1980 Mar 10;255(5):2005–2013. [PubMed] [Google Scholar]
  37. Young K. C., Shi G. Y., Wu D. H., Chang L. C., Chang B. I., Ou C. P., Wu H. L. Plasminogen activation by streptokinase via a unique mechanism. J Biol Chem. 1998 Jan 30;273(5):3110–3116. doi: 10.1074/jbc.273.5.3110. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES