The high-affinity calcium-calmodulin-binding site does not play a role in the modulation of type 1 inositol 1,4,5-trisphosphate receptor function by calcium and calmodulin

Elena NOSYREVA*, Tomoya MIYAKAWA†, Zhengnan WANG*, Lyuba GLOUCHANKOVA*, Akiko MIZUSHIMA†, Masamitsu IINO† and IIya BEZPROZVANNY*1

*Department of Physiology, UT Southwestern Medical Center at Dallas, Dallas, TX 75390, U.S.A., and †Department of Pharmacology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan

Modulation of the inositol 1,4,5-trisphosphate (InsP₃) receptors (InsP₃R) by cytosolic calcium (Ca²⁺) plays an essential role in Ca²⁺ signalling, but structural determinants and mechanisms responsible for the InsP₃R regulation by Ca²⁺ are poorly understood. In the present study, we expressed rat InsP₃R type 1 (InsP₃R1) in Spodoptera frugiperda cells using a baculovirusexpression system and reconstituted the recombinant InsP₃R1 into planar lipid bilayers for functional analysis. We observed only minor effects of 0.5 mM of calmodulin (CaM) antagonist W-7 on the Ca²⁺ dependence of InsP₃R1. Based on a previous analysis of mouse InsP₃R1 [Yamada, Miyawaki, Saito, Nakajima, Yamamoto-Hino, Ryo, Furuichi and Mikoshiba (1995) Biochem J. 308, 83–88], we generated the $Trp^{1577} \rightarrow Ala$ (W1577A) mutant of rat InsP₃R1 which lacks the high-affinity Ca2+-CaM-binding site. We found that the W1577A mutant displayed a bell-shaped Ca²⁺ dependence similar to the wild-type

INTRODUCTION

The inositol (1,4,5)-trisphosphate (InsP₃) receptor (InsP₃R) is an intracellular calcium (Ca²⁺) release channel that plays a critical role in Ca²⁺ signalling [1]. Three mammalian isoforms of InsP₃R, namely type I (InsP₃R1), type II (InsP₃R2) and type III (InsP₃R3) have been identified [2], with only minimal information available to date about the differences in their functional properties. The InsP₃Rs are subjected to multiple levels of regulation [1,3,4]. Binding of InsP₃R1 is under biphasic feedback control by cytosolic Ca²⁺: at lower concentrations Ca²⁺ acts as a co-activator of InsP₃R1 and at higher concentrations it inhibits InsP₃R1 [5–7]. This property of InsP₃R1, called the 'bell-shaped' Ca²⁺ dependence, is essential for the generation of Ca²⁺ waves and oscillations in cells [1,8–10].

Despite the crucial importance for the $InsP_3R$ signalling function, very little is known about the structural determinants and the mechanisms responsible for biphasic regulation of $InsP_3R1$ by cytosolic Ca^{2+} (see [4] for a recent review). Direct association of Ca^{2+} with the intrinsic Ca^{2+} -sensor region appears to be involved in the activation of $InsP_3R1$ by Ca^2 [11]. Ca^{2+} -binding protein calmodulin (CaM) has been strongly implicated in the inhibition of $InsP_3R1$ by Ca^{2+} [12]. A high-affinity Ca^{2+} –CaMbinding site has been identified in the coupling domain of the InsP₃R1 in planar lipid bilayers. Activation of B cell receptors resulted in identical Ca²⁺ signals in intact DT40 cells lacking the endogenous InsP₃R and transfected with the wild-type InsP₃R1 or the W1577A mutant cDNA subcloned into a mammalian expression vector. In the planar lipid bilayer experiments, we showed that both wild-type InsP₃R1 and W1577A mutant were equally sensitive to inhibition by exogenous CaM. From these results, we concluded that the interaction of CaM with the highaffinity Ca²⁺–CaM-binding site in the coupling domain of the InsP₃R1 does not play a direct role in biphasic modulation of InsP₃R1 by cytosolic Ca²⁺ or in InsP₃R1 inhibition by CaM.

Key words: baculovirus, calcium signalling, DT40 cells, planar lipid bilayer, Sf9 cells, single-channel recordings, structure function.

InsP₃R1 in biochemical experiments [13]. An additional Ca²⁺independent low-affinity CaM-binding site was detected in the ligand-binding amino terminal portion of the InsP₃R1 in the InsP₃-binding experiments [14–16]. Exogenous application of CaM has been reported to inhibit the InsP₃R1 activity in a variety of functional assays [12,15–19]. What is the role of highaffinity Ca²⁺–CaM-binding site in the biphasic modulation of InsP₃R1 by Ca²⁺ and inhibition by CaM?

To address this question, we generated a $Trp^{1577} \rightarrow Ala$ (W1577A) mutation in the rat InsP₃R1, which eliminated the Ca2+-dependent association of InsP₃R1 with CaM. We also compared the Ca2+ dependence of the wild-type InsP₃R1 with the W1577A mutant. The InsP₃R1 used for the present study was expressed in insect Spodoptera frugiperda (Sf9) cells using recombinant baculovirus and reconstituted into planar lipid bilayers for single-channel recordings and analysis. We also analysed the B cell receptor (BCR)-mediated Ca2+ signals supported by the wild-type InsP₃R1 and the W1577A mutant expressed in DT40 cells lacking endogenous InsP_aR [20]. In addition, we evaluated the changes in the Ca²⁺ dependence of InsP₃R1 induced by CaM antagonist W-7 and compared the responses of wild-type InsP₃R1 and W1577A mutant with exogenous CaM. The results lead us to conclude that the highaffinity Ca2+-CaM-binding site in the coupling domain of InsP₃R1 is not involved directly in the biphasic modulation of InsP₃R1 by Ca²⁺ or in the inhibition by CaM.

Abbreviations used: BCR, B cell receptor; CaM, calmodulin; InsP₃, inositol 1,4,5-trisphosphate; InsP₃R, InsP₃ receptor; Sf9, Spodoptera frugiperda; W1577A, Trp¹⁵⁷⁷ \rightarrow Ala.

¹ To whom correspondence should be addressed (e-mail Ilya.Bezprozvanny@UTSouthwestern.edu).

Figure 1 Expression in Sf9 cells and Ca²⁺–CaM-binding properties of rat wild-type InsP₃R1 and W1577A mutant

(A) Western-blot analysis of microsomal proteins. Microsomes isolated from rat cerebellar (cer), non-infected Sf9 cells (Sf9), from Sf9 cells infected with RT1 (RT1) and W1577A (W1577A) recombinant baculoviruses were analysed by Western blotting with anti-InsP₃R1 polyclonal antibody T₄₄₃. For each preparation 10 μ g microsomal protein was loaded on to the gel. The arrow points to the 260 kDa position expected for the InsP₃R1. (B) Association of InsP₃R1 and W1577A with CaM—Sepharose. Fractions collected from the output of CaM—Sepharose column were collected while washing in high Ca²⁺-binding buffer (1.5 mM of Ca²⁺), eluted in low Ca²⁺-elution buffer (2 mM EGTA) and analysed by Western blotting with anti-InsP₃R1 polyclonal antibody T₄₄₃. An equal volume from each collected fraction was loaded on to each lane. The input lane contains 1/50 of the total sample used for CaM—Sepharose binding experiments. Results obtained with the wild-type InsP₃R1 (RT1, top row) and W1577A mutant (W1577A, bottom row) are compared.

EXPERIMENTAL

Generation of recombinant baculoviruses

The full-length neuronal rat $InsP_{R1}(SI - /SII +)$ [21] expression construct in pcDNA3 vector (InsP₃R1-pcDNA3) was described previously [22]. The coding sequence of the InsP₃R1 was excised from pcDNA3 vector with XhoI and XbaI and subcloned into SalI and XbaI sites of pFastBac1 expression vector (Invitrogen, Carlsbad, CA, U.S.A.) with the EcoRI, BamHI, XhoI, KpnI and SphI sites removed. The generated pFastBac1-InsP₃R1 plasmid was transformed into DH10Bac (Invitrogen) Escherichia coli strain and baculoviruses expressing InsP₃R1 (RT1) were generated using the Bac-to-Bac baculovirus-expression system according to the manufacturer's (Invitrogen) instructions. The generated RT1 baculoviruses were amplified three times in Sf9 cells to yield P3 stock with the titre 10^8-10^9 pfu/ml. The W1577A mutant was generated on the basis of InsP₃R1-pcDNA3 construct using the megaprimer PCR method and was verified by sequencing. The 2.5 kb fragment of the InsP₃R1 sequence containing W1577A mutation was excised from W1577ApcDNA3 by BamHI (3797, 6329) and subcloned into BamHIdigested and CIAP-dephosphorylated pFastBac1-InsP₃R1. The orientation of the BamHI/BamHI fragment was verified by PCR and the presence of W1577A mutation in the resulting pFastBac1-W1577A plasmid was verified by sequencing. The recombinant W1577A baculovirus encoding the InsP_aR1-W1577A mutant was generated and amplified using the Bac-to-Bac system (Invitrogen) as described for the RT1 virus.

Expression of the InsP₃R1 in Sf9 cells

Sf9 cells were obtained from ATCC and cultured in suspension culture in supplemented Grace's Insect Media (Invitrogen) with 10% foetal bovine serum at 27 °C. For the InsP₃R1 or W1577A expression 150 ml of Sf9 cell culture was infected by RT1 or W1577A baculoviruses at MOI of 5-10. Sf9 cells (66 h postinfection) were collected by centrifugation at 4 °C for 5 min at 800 rev./min (GH 3.8 rotor; Beckman Instruments). The cellular pellet was resuspended in 25 ml of homogenization buffer [0.25 M sucrose/5 mM Hepes (pH 7.4)] supplemented with a cocktail of protease inhibitors [1 mM EDTA, 2 μ g/ml aprotinin, 10 μ g/ml leupeptin, 1 mM benzamidine, 2.2 mM 4-(2-aminoethyl)benzenesulphonyl fluoride hydrochloride, 10 µg/ml pepstatin and 0.1 mg/ml PMSF]. Cells were disrupted by sonication (Branson Ultrasonics) and manually homogenized on ice with the glass-Teflon homogenizer. The microsomes were isolated from the Sf9 cell homogenate by gradient centrifugation as described previously for HEK-293 cells [22]. The final microsomal preparation was resuspended in 0.5 ml of the storage buffer [10%]sucrose/10 mM 3-morpholino-2-hydroxypropanesulphonic acid (pH 7.0)] to typically yield 6 mg/ml of protein (Bradford assay; Bio-Rad), aliquoted, quickly frozen in liquid nitrogen and stored at -80 °C. Expression of InsP₃R1 was confirmed by Western-blot analysis. The anti-InsP₃R1 rabbit polyclonal antibody (T₄₄₃) was described previously [22].

Single-channel recordings and analysis of the InsP₃R1 activity

Recombinant wild-type InsP₃R1 or W1577A mutants expressed in Sf9 cells were incorporated into the bilayer by microsomal vesicle fusion as described previously for native cerebellar InsP₂R and for the InsP₃R1 expressed in HEK-239 cells [5,22-24]. Single-channel currents were recorded at 0 mV transmembrane potential using 50 mM Ba2+ dissolved in Hepes (pH 7.35) in the trans (intraluminal) side as a charge carrier [24]. The cis (cytosolic) chamber contained 110 mM of Tris dissolved in Hepes (pH 7.35). To obtain the Ca^{2+} dependence of the InsP₂R1 we follow the method described in [5]. Concentration of free Ca^{2+} in the *cis* chamber was controlled over the range 10 nM (pCa 8) to 10 μ M (pCa 5) using a mixture of 1 mM EGTA, 1 mM HEDTA and variable concentrations of CaCl₂. The resulting concentration of the free Ca²⁺ was calculated using a program described in [25]. All recordings of InsP₃R1 activity were performed in the presence of 0.5 mM Na₂ATP [23] and 2 μ M InsP₃. All additions (InsP₃, ATP, CaCl₂ and CaM) were made to the *cis* chamber from the concentrated stocks with stirring the solutions for at least 30 s in both chambers. InsP₃R1 single-channel currents were amplified (Warner OC-725), filtered at 1 kHz by lowpass 8-pole Bessel filter, digitized at 5 kHz (Digidata 1200; Axon Instruments, Foster City, CA, U.S.A.) and stored on computer hard drive and recordable optical discs. InsP₃ was purchased from Alexis (San Diego, CA, U.S.A.), CaM from Calbiochem (La Jolla, CA, U.S.A.), lipids were from Avanti Polar Lipids (Alabaster, AL, U.S.A.) and all other chemicals were from Sigma.

For off-line computer analysis (pClamp 7; Axon Instruments) single-channel data were filtered digitally at 500 Hz and for the presentation of the current traces data were filtered at 200 Hz. Evidence for the presence of 2–3 functional channels in the bilayer was obtained in most of the experiments. The number of active channels in the bilayer was estimated as the maximal number of simultaneously open channels during the course of the experiment [26]. The probability of the closed level, and the 1st and 2nd open levels was determined by using the half-threshold crossing criteria ($t \ge 2$ ms) from the records lasting for at least 2 min and 30 s. The single-channel open probability P_0 for one

Figure 2 Bell-shaped Ca²⁺ dependence of recombinant InsP₃R1

(A) Single-channel records of $InsP_3R1$ in planar lipid bilayers. The unitary current recordings from the same experiment are shown at different *cis* (cytosolic) Ca^{2+} concentrations as indicated. (B) Bell-shaped Ca^{2+} dependence of recombinant $InsP_3R1$ (\bigcirc). The channel P_0 at each Ca^{2+} concentration was normalized to the maximum P_0 observed in the same experiment. The normalized data from independent experiments were averaged together at each Ca^{2+} concentration and shown as means \pm S.E.M. (n = 4). The maximal $P_0 = 17 \pm 5\%$ (n = 4).

channel was calculated using the binomial distribution for the levels 0, 1 and 2, and assuming that the channels were identical and independent [27]. Normalizing the P_o to the maximal P_o observed in the same experiment minimized potential errors in absolute P_o values associated with the possible underestimation of the number of active channels in the bilayer. To generate the complete Ca²⁺-dependence curves, the experiments with persistent InsP₃R1 activity for duration of the experiment (> 40 min) were chosen for analysis in order to prevent artifacts related to irreversible channel inactivation that are occasionally observed in the bilayers.

CaM–Sepharose-binding experiments

For CaM-Sepharose-binding experiments, recombinant InsP_aR1 and W1577A were extracted from Sf9 microsomes prepared as described above in the extraction buffer [1 % (v/v) Triton X-100/100 mM NaCl/20 mM Tris (pH 7.5)/0.2 mM CaCl₂/2 mM 2-mercaptoethanol/0.1 mg/ml PMSF]. Protein extracts were clarified by centrifugation for 10 min at 100000 g (TL-100) and adjusted to 0.2 % (v/v) Triton X-100, 200 mM NaCl, 20 mM Tris (pH 7.4), 1.5 mM CaCl, and 1 mM 2-mercaptoethanol. The resulting protein lysate (0.15 ml) was mixed with 0.3 ml of CaM-Sepharose 4B beads (Amersham-Pharmacia Biotech, Piscataway, NJ, U.S.A.) and incubated for 4 h at 4 °C with gentle stirring. The beads were loaded on to a PD-10 disposable column and washed with 5 bead vols of binding buffer [0.2%](v/v) Triton X-100/200 mM NaCl/20 mM Tris (pH 7.4)/1.5 mM CaCl₂/1 mM 2-mercaptoethanol]. The attached proteins were eluted with 4 bead vols of elution buffer [0.2% (v/v) Triton X-

100/200 mM NaCl/20 mM Tris (pH 7.4)/2 mM EGTA/1 mM 2-mercaptoethanol]. During the washing and elution stages, 0.4 ml fractions were collected manually and were analysed by SDS/PAGE and Western blotting with anti-InsP₃R1-specific antibodies (T_{443}).

Ca²⁺ imaging in DT40 cells

DT40 chicken B lymphoma cells were cultured in RPMI1640 supplemented with 10% fetal calf serum, 1% chicken serum, 100 units/ml penicillin, 100 units/ml streptomycin and 2 mM glutamine. Mutant DT40 cells with all three of their InsP₃R genes disrupted [20] were transfected with the linearized rat InsP₃R1–pcDNA3 plasmid (with or without the W1577A mutation) by electroporation (330 V; 250 μ F). Several stably expressing clones were isolated in the presence of 2 mg/ml of G418 (Geneticin; Gibco BRL). Ca2+ imaging of RT1 and W1577A transfected cells was performed as described previously [11,28]. Briefly, cells on poly-L-lysine and collagen-coated coverslips were loaded with 1 µM fura-2 acetoxymethyl ester in a physiological salt solution [150 mM NaCl/4 mM KCl/2 mM CaCl₂/1 mM MgCl₂/5 mM Hepes/5.6 mM of glucose (pH 7.4)]. After loading the indicator, cells were stimulated with ligation of the BCR with anti-BCR antibody, which resulted in the generation of InsP₃ through tyrosine phosphorylation of phospholipase $C\gamma$. The fluorescence images were captured at room temperature (22-24 °C) with an Olympus IX70 inverted microscope, equipped with a cooled CCD camera (Photometrics, Tucson, AZ, U.S.A.) and a polychromatic illumination system (T.I.L.L. Photonics; Germany), at a rate of one pair of frames with excitation at 345

and 380 nm every 10, 1 or 0.25 s. Intracellular Ca^{2+} concentrations of the fura-2 acetoxymethyl ester-loaded cells were calculated using the equation reported previously [29]. The mutant DT40 cells did not show any response to BCR stimulation before transfection with either wild-type or mutant InsP₃R1 [20].

RESULTS

The W1577A mutation of rat $InsP_3R1$ eliminated the Ca^{2+} dependent association with CaM

To study the role of high-affinity Ca²⁺-CaM-binding site in the InsP₃R1 sequence, we generated baculoviruses encoding wildtype rat InsP₃R1 (RT1) and W1577A mutant of rat InsP₃R1 (W1577A) as described in Experimental section. Microsomes isolated from RT1 or W1577A-infected Sf9 cells, but not from non-infected cells, contained large quantities of InsP₃R1 detectable by Western blotting with T443 anti-InsP3R1 polyclonal antibodies (Figure 1A). Small amounts of endogenous InsP₃R1 were detected in microsomes from non-infected Sf9 cells when the blots were overexposed (results not shown). Our results agree with the previously reported high-level expression of InsP₃R1 in Sf9 cells using the baculovirus-expression system [14,30]. The apparent molecular mass of recombinant InsP₃R1 and W1577A mutant was identical to the mass of the InsP₃R1 present in rat cerebellar microsomes (Figure 1A). The immunopositive bands of smaller molecular mass detected in samples of rat cerebellar microsomes and microsomes from RT1 or W1577A-infected Sf9 cells most likely correspond to the products of partial $InsP_3R1$ proteolysis. Indeed, if protease inhibitors were omitted from the homogenization buffer, the bands of smaller molecular mass became more pronounced when compared with the full-length band on the anti-InsP₃R1 Western blot (results not shown). Similar amount of degradation was observed for native rat cerebellar $InsP_3R$, wild-type recombinant rat $InsP_3R1$ and W1577A mutant (Figure 1A).

Yamada et al. [13] reported that the W1576A mutation in mouse InsP₃R1 eliminates the Ca²⁺-dependent association of InsP₃R1 with CaM-Sepharose. The W1577A mutation in rat InsP₃R1 was designed to mimic the W1576A mutation in mouse InsP₃R1. Is the Ca²⁺-CaM-binding site eliminated by W1577A mutation in rat InsP₃R1? To address this question, we repeated CaM-Sepharose-binding experiments of Yamada et al. with the wild-type rat InsP₃R1 and W1577A mutant expressed in Sf9 cells by baculovirus infection. In these experiments, the microsomes isolated from RT1 or W1577A-infected Sf9 cells were solubilized in Triton and incubated with CaM-Sepharose beads in the binding buffer containing 1.5 mM Ca²⁺. Following incubation, the beads were loaded on to a column and washed using the binding buffer. The bound proteins were eluted from the CaM-Sepharose column by the Ca2+-free elution buffer containing 2 mM EGTA. The samples collected in the output of the column during the washing and elution stages were analysed by Western blotting with T_{443} anti-Ins P_3R1 antibodies. In agreement with Yamada et al. [13], we observed Ca2+-dependent retention of InsP₃R1 on the CaM–Sepharose column (Figure 1B,

Figure 3 Effect of W-7 on InsP₃R1 modulation by cytosolic Ca²⁺

(A) The unitary single-channel recordings of recombinant InsP₃R1 channels in the presence of W-7 (0.5 mM) at different Ca²⁺ concentration as indicated. (B) Bell-shaped Ca²⁺ dependence of recombinant InsP₃R1 channels in the presence of 0.5 mM W-7 (\bullet). The channel P_0 at each Ca²⁺ concentration was normalized to maximal P_0 in the same experiment, averaged as described in Figure 2(B) and shown as means \pm S.E.M. (n = 3). The maximal $P_0 = 32 \pm 5\%$ (n = 4). The thin smooth line represents Ca²⁺ dependence of the wild-type InsP₃R1 from Figure 2(B).

Figure 4 Modulation of the InsP₃R1 W1577A mutant by cytosolic Ca²⁺

(A) The unitary single-channel recordings of W1577A mutant at different Ca²⁺ concentrations are indicated. (B) Bell-shaped Ca²⁺ dependence of recombinant W1577A mutant (\odot). The channel P_0 at each Ca²⁺ concentration was normalized to maximal P_0 in the same experiment, averaged as described for Figure 2(B) and shown as means \pm S.E.M. (n = 3). The maximal $P_0 = 12 \pm 2\%$ (n = 4). The thin smooth line represents the Ca²⁺ dependence of the wild-type InsP_aR1 from Figure 2(B).

top row). In contrast with the wild-type $InsP_3R1$, the W1577A mutant was not retained on the column (Figure 1B, bottom row). From these results we concluded that a unique high-affinity Ca^{2+} -CaM-binding site present in rat $InsP_3R1$ is indeed eliminated in the W1577A mutant.

Modulation of recombinant InsP₃R1 by cytosolic Ca²⁺

We previously established that $InsP_3R1$ expressed in Sf9 cells form functional $InsP_3$ -gated channels upon reconstitution in planar lipid bilayers [31]. Feedback regulation of $InsP_3R1$ by cytosolic Ca^{2+} is one of the most fundamental properties of $InsP_3R1$ responsible for complex spatio-temporal aspects of Ca^{2+} signalling [1]. In the next series of experiments, we evaluated the modulation of recombinant rat $InsP_3R1$ by cytosolic Ca^{2+} . In agreement with the behaviour of native cerebellar $InsP_3R$ [5] and recombinant rat $InsP_3R1$ expressed in HEK293 and COS cells [22,32], rat $InsP_3R1$ expressed in Sf9 cells displays the bell-shaped Ca^{2+} dependence with the maximal P_0 at 300 nM Ca^{2+} , halfmaximal activation at 100 nM Ca^{2+} and half-inhibition at 1 μ M Ca^{2+} (Figures 2A and 2B).

Role of CaM in the InsP₃R1 modulation by cytosolic Ca²⁺

Association of Ca^{2+} and CaM with the $InsP_3R1$ has been proposed to be critical for the Ca^{2+} -dependent inactivation of cerebellar $InsP_3R1$ [12]. In support of this hypothesis, application of the CaM inhibitor W-7 at a concentration of 0.5 mM has been reported to activate cerebellar $InsP_3R1$ [12]. We tested submillimolar concentrations of W-7 and observed an increase in the maximal single-channel P_0 of recombinant InsP₃R1 from $17 \pm 5\%$ (n = 4) in control experiments to $32 \pm 5\%$ (n = 4) in the presence of 0.5 mM W-7. These results were in agreement with those of Michikawa et al. [12]. However, the effect of W-7 is unlikely to be related to its inhibition of CaM. First, the 0.5 mM concentration of W-7 required to see the potentiating effect on InsP₃R1 activity in our experiments and in experiments of Michikawa et al. [12] is at least 10 times greater than its apparent affinity for CaM observed in other systems [33,34]. Smaller concentrations of W-7 or compound 48/80 had no significant effect on cerebellar InsP₃R1 activity in experiments of Michikawa et al. and in our experiments (results not shown; Bezprozvanny, I. and Ehrlich, B. E., unpublished work). Secondly, the potentiating effect of 0.5 mM W-7 on InsP₃R1 activity was uniform over the tested range of Ca²⁺ concentrations. Indeed, when P_{o} values were normalized to the maximal P_{o} observed in the same experiment, it became apparent that 0.5 mM of W-7 caused only a minor shift in the Ca2+ dependence of rat cerebellar $InsP_{3}R1$ (n = 3, results not shown) or recombinant rat $InsP_{3}R1$ expressed in Sf9 cells (Figure 3, n = 3). For recombinant InsP₃R1 the peak of the normalized open probability curve was at 300 nM Ca²⁺ in control experiments (Figures 2B and 3B, thin line) and at $1 \,\mu$ M Ca²⁺ in the presence of 0.5 mM W-7 (Figure 3B, thick line).

To further investigate the role of CaM in the $InsP_3R1$ modulation by Ca^{2+} , we analysed the Ca^{2+} dependence of W1577A mutant, which lacks the high-affinity Ca^{2+} –CaMbinding site (Figure 1B). When the W1577A mutant of $InsP_3R1$

Figure 5 Ca^{2+} signals in DT40 cells expressing InsP₃R1 (A, C) and W1577A mutant (B, D) in response to BCR stimulation

Cells were stimulated with ligation of BCR with anti-BCR antibody (1 μ g/ml) in physiological salt solution. The data are shown for 4 min (**A**, **B**) and 60 min (**C**, **D**). Data for three independent cells, represented by thin, thick and dotted traces, are shown in each panel.

was expressed in Sf9 cells using the baculovirus-expression system and incorporated in planar lipid bilayers, the $InsP_3$ -gated channels were recorded (Figure 4A). The gating and conductance properties of W1577A channels were similar to the wild-type $InsP_3R1$ (results not shown). Similar to wild-type $InsP_3R1$ (Figures 2B and 4B, thin line), the W1577A mutant displayed the bell-shaped Ca^{2+} dependence on cytosolic Ca^{2+} with the peak at 200 nM Ca^{2+} (Figure 4B, thick line).

It is possible that CaM associated with the wild-type InsP_aR1 in cells is lost during the planar lipid bilayer reconstitution procedure. To test this hypothesis, we compared Ca²⁺ signals induced by BCR stimulation in DT40 cells lacking endogenous InsP₃R [20] and stably transfected with the wild-type InsP₃R1 or with the W1577A mutant expression plasmids. Because Ca²⁺ dependence of the InsP₃R underlies spatio-temporal aspects of Ca²⁺ signalling in cells, we reasoned that the differences in Ca²⁺ modulation of InsP₃R should result in different patterns of observed Ca²⁺ signals. Indeed, DT40 cells expressing mutant InsP₃R1 with a decreased Ca²⁺ sensitivity showed significant alterations in the BCR-stimulated Ca²⁺-signalling patterns, i.e. reduced rate of rise and loss of Ca²⁺ oscillations [11]. However, the temporal pattern of Ca2+ signals in DT40 cells expressing the wild-type InsP₃R1 and the W1577A mutant was indistinguishable (Figures 5A–5D, n = 3 for InsP₃R1 and W1577A), arguing against the importance of CaM association with the high-affinity Ca^{2+} -CaM-binding site in the coupling domain of InsP₃R1 ([13]; Figure 1B) for InsP₃R1 modulation by Ca²⁺ in intact cells.

The InsP₂R1 inhibition by CaM

Our results (Figures 2-5) lead us to conclude that the highaffinity Ca²⁺–CaM-binding site does not play a role in biphasic modulation of InsP₃R1 by cytosolic Ca²⁺. A number of reports [12,15–19] suggest a direct inhibitory influence of CaM on InsP₃R1 activity. What is the role of high-affinity Ca²⁺–CaM-binding site in InsP₃R1 inhibition by CaM? To answer this question, we compared the sensitivity of the wild-type InsP₃R1 and W1577A mutant with an application of exogenous CaM to planar lipid bilayers. In agreement with the previous reports [12,15–19], the InsP₃R1 activity was reduced to $69 \pm 18 \%$ (*n* = 3) of control by application of 12 μ M of CaM (Figure 6, \bigcirc). It is highly possible that the relatively modest inhibitory effects of CaM observed in our experiments are related to the high InsP₃ concentration $(2 \mu M)$ and low Ca²⁺ concentration (300 nM) used in recordings of the InsP₃R1 activity. The sensitivity to inhibition by CaM was unchanged in W1577A mutant; on an average, the activity of W1577A channels was decreased to $69 \pm 23 \%$ (*n* = 3) of control by application of 12 μ M CaM (Figure 6, \bullet). Thus we conclude

Figure 6 Functional effect of CaM on InsP₃R1 and W1577A mutant

The channel activity was determined in the presence of increasing concentrations of CaM as indicated. The P_0 at each CaM concentration was normalized to P_0 in the absence of CaM in the same experiment. The normalized P_0 values from different experiments were averaged together at each CaM concentration and plotted as means \pm S.E.M. (n = 3) for wild-type InsP₃R1 (\bigcirc) and W1577A (\bigcirc). In all experiments, channel activity was recorded in the presence of 2 μ M InsP₃, 300 nM Ca²⁺ and 0.5 mM ATP. In this series of experiments, P_0 in the absence of CaM was 3.6 \pm 0.1% (n = 3) for the wild-type InsP₃R1 and 10.3 \pm 0.2% (n = 3) for W1577A.

that the high-affinity Ca^{2+} –CaM-binding site in the $InsP_{3}R1$ sequence does not play an important role in the modulation of $InsP_{3}R1$ activity by CaM [12,15–19].

DISCUSSION

Using the baculovirus-expression system we analysed the role of the high-affinity Ca²⁺-CaM-binding site in the regulation of InsP₃R1 activity by Ca²⁺ and CaM in planar lipid bilayers. We found that the recombinant wild-type InsP₃R1 expressed in Sf9 cells display a bell-shaped Ca2+ dependence with the peak at 300 nM, similar to the Ca2+ dependence of native cerebellar InsP₃R [5] and of recombinant InsP₃R1 expressed in HEK293 cells [22]. CaM has been strongly implicated in Ca²⁺-dependent inhibition of cerebellar InsP₃R [12]. Observations of Michikawa et al. (1999) showed that (1) purified cerebellar InsP₃R lacked Ca²⁺ inhibition, but addition of CaM to the purified InsP₃R restored the inhibition, (2) addition of CaM antagonist W-7 at 0.5 mM or CaM-binding peptide activated microsomal cerebellar InsP₃R. In the work by Ramos-Franco et al. [32,35] it was shown that solubilized and purified cerebellar InsP₃R and recombinant InsP₃R1 display the bell-shaped Ca²⁺ dependence without addition of exogenous CaM. The reason for discrepancy between the results obtained by Michikawa et al. [12] and Ramos-Franco et al. [32,35] is not clear. Similar to Michikawa et al. [12], we found that 12 μ M of CaM decreased the activity of InsP₃R1 in planar lipid bilayers (Figure 6). However, the inhibitory effect of CaM was evident with InsP₃R1 incorporated to bilayers by microsomal vesicle fusion, and not only with solubilized and purified InsP₃R as implied by Michikawa et al. [12]. In the present study, we also observed a 2-fold activation of InsP₃R1 by 0.5 mM W-7, but the effect was uniform over the range of Ca²⁺

concentrations tested and resulted only in a minor shift in Ca^{2+} dependence of normalized P_o of rat cerebellar InsP₃R (results not shown) or recombinant InsP₃R1 (Figure 3). The 0.5 mM concentration of W-7 required to observe the potentiating effect on InsP₃R1 activity [12] is at least 10 times greater than its apparent affinity for CaM observed in other systems [33,34]. Thus the potentiating effect of W-7 on InsP₃R1 activity is unlikely to be caused by specific inhibition of the CaM function.

To investigate further the role of CaM in InsP₃R1 modulation by Ca²⁺ and CaM, we generated the W1577A mutant of rat InsP₃R1, which was designed to mimic the equivalent W1576A mutation in mouse InsP₃R1 [13]. In agreement with the data of Yamada et al. [13], we found that the W1577A mutant of rat InsP₃R1 lacks the high-affinity Ca²⁺–CaM-binding site (Figure 1B). The W1577A mutant displayed the bell-shaped Ca²⁺dependence in bilayers (Figure 4) and supported the Ca²⁺ signalling pattern in DT40 cells (Figure 5) indistinguishable from the ones characteristic of the wild-type InsP₃R1. The sensitivity of the W1577A mutant to inhibition by CaM was similar to the sensitivity of the wild-type InsP₃R1 (Figure 6). From these results, we conclude that under our assay conditions the Ca²⁺-CaM-binding site in the InsP₃R1 coupling domain [13] does not play a direct role in biphasic modulation of InsP₃R1 by Ca^{2+} [5–7] or in the inhibition of InsP₃R1 by CaM [15–19].

The high-affinity Ca^{2+} –CaM-binding site investigated in the present study is conserved in InsP₃R1 and InsP₃R2 isoforms, but is absent in the InsP₃R3 isoform [13]. From lipid-bilayer recordings it has been initially suggested that InsP₃R3 is not inhibited by Ca²⁺ [36]. However, using Ca²⁺-flux measurements [37–39] and *Xenopus* nuclear envelope patch-clamp recordings [40] it was later demonstrated that InsP₃R3 are biphasically regulated by Ca²⁺. When effects of exogenous CaM were tested in permeabilized cells, it was concluded that InsP₃R3 and InsP₃R1 display similar sensitivity to inhibition by CaM [17,41]. Thus our conclusion that the InsP₃R1- and InsP₃R2-specific Ca²⁺–CaM-binding sites do not play a direct role in InsP₃R1 modulation by Ca²⁺ and CaM agrees with the previous functional comparison of InsP₃R1 and InsP₃R3 isoforms.

The InsP₃R1 mRNA undergoes an alternative splicing in the SII site located in the middle-coupling domain [2]. The SII(+) (neuronal) isoform of InsP₃R1 was used in our study. Biochemical data indicate that an additional CaM-binding site is created in the SII(-) isoform of InsP₃R1 [42,43]. Thus it is possible that the SII(-) isoform of InsP₃R1, expressed outside of the nervous system [44], is more sensitive to modulation by CaM. Indeed, the Ca²⁺–CaM-dependent inhibition of InsP₃-induced Ca²⁺ release was observed in A7r5 cells [19], which primarily express the InsP₃R1-SII(-) isoform. In recent planar lipid bilayer experiments [31] we discovered that both InsP₃R1-SII(+) and InsP₃R1-SII(-) isoforms expressed in Sf9 cells displayed the bell-shaped Ca²⁺ dependence that peaked at 300 nM Ca²⁺ but had different width. The role played by SII(-) splice variant-specific CaM-binding site in the observed differences is unknown.

An additional low-affinity CaM-binding site, which may potentially play a role in $InsP_3R1$ modulation, has been identified in the ligand-binding domain of $InsP_3R1$ [14,15,45]. This site is a Ca²⁺-independent CaM-interaction site, which decreases the $InsP_3R$ affinity for $InsP_3$. This site is likely to be responsible for CaM-dependent inhibition of $InsP_3R$ function (Figure 6; [15–19]). It is also conceivable that such an interaction could indirectly modulate Ca²⁺ regulation, since it was shown that the sensitivity of cerebellar [46] and *Xenopus* [47] $InsP_3R1$ to Ca²⁺ inhibition is inversely related to the $InsP_3$ concentration.

In summary, the high-affinity Ca^{2+} –CaM-binding site in the coupling region of InsP₃R1-SII(+) isoform [13] does not play a

direct role in the biphasic modulation of $InsP_3R1$ by Ca^{2+} [5–7] or in $InsP_3R1$ inhibition by CaM [15–19]. The putative 'inhibitory Ca^{2+} -binding site' responsible for the negative limb of the 'bell-shaped' curve may be a part of the $InsP_3R1$ or it may be provided by another, yet unidentified, accessory protein. The CaM-dependent inhibition of $InsP_3R1$ function is likely to involve the amino terminal-binding site in the $InsP_3R1$ ligand-binding domain [14,15,45]. The functional significance of the high-affinity Ca^{2+} –CaM-binding site in the $InsP_3R1$ coupling domain needs to be clarified in future studies.

We are grateful to G. Mignery and T. C. Südhof for providing the rat $InsP_3R1$ clone. We thank Phyllis Foley for the administrative assistance, Anton Maximov and Humbert De Smedt for comments on the manuscript and Huping Tu for helping with the CaM-inhibition experiments. L. Glouchankova was on leave from the Institute of Cytology, Russian Academy of Sciences (St. Petersburg, Russia). This work was supported by the Welch Foundation and NIH R01 NS38082 (IB) and by a grant from the Ministry of Education, Culture, Sports, Science and Technology of Japan (MI).

REFERENCES

- 1 Berridge, M. J. (1993) Inositol trisphosphate and calcium signalling. Nature (London) ${\bf 361},\, 315{-}325$
- 2 Furuichi, T., Kohda, K., Miyawaki, A. and Mikoshiba, K. (1994) Intracellular channels. Curr. Opin. Neurobiol. 4, 294–303
- 3 Bezprozvanny, I. and Ehrlich, B. E. (1995) The inositol 1,4,5-trisphosphate (InsP₃) receptor. J. Membr. Biol. 145, 205–216
- 4 Taylor, C. W. (1998) Inositol trisphosphate receptors: Ca²⁺-modulated intracellular Ca²⁺ channels. Biochim. Biophys. Acta **1436**, 19–33
- 5 Bezprozvanny, I., Watras, J. and Ehrlich, B. E. (1991) Bell-shaped calcium-response curves of Ins(1,4,5)P₃- and calcium-gated channels from endoplasmic reticulum of cerebellum. Nature (London) **351**, 751–754
- 6 Finch, E. A., Turner, T. J. and Goldin, S. M. (1991) Calcium as a coagonist of inositol 1,4,5-trisphosphate-induced calcium release. Science 252, 443–446
- 7 lino, M. (1990) Biphasic Ca²⁺ dependence of inositol 1,4,5-trisphosphate-induced Ca release in smooth muscle cells of the guinea pig *taenia caeci*. J. Gen. Physiol. **95**, 1103–1122
- De Young, G. W. and Keizer, J. (1992) A single pool IP₃-receptor-based model for agonist stimulated Ca²⁺ oscillations. Proc. Natl. Acad. Sci. U.S.A. 89, 9895–9899
- 9 Lechleiter, J. D. and Clapham, D. E. (1992) Molecular mechanisms of intracellular calcium excitability in X-Laevis oocytes. Cell (Cambridge, Mass.) 69, 283–294
- 10 Parker, I., Choi, J. and Yao, Y. (1996) Elementary events of InsP3-induced Ca²⁺ liberation in Xenopus oocytes: hot spots, puffs and blips. Cell Calcium **20**, 105–121
- 11 Miyakawa, T., Mizushima, A., Hirose, K., Yamazawa, T., Bezprozvanny, I., Kurosaki, T. and lino, M. (2001) Ca(2+)-sensor region of IP(3) receptor controls intracellular Ca(2+) signaling. EMBO J. 20, 1674–1680
- 12 Michikawa, T., Hirota, J., Kawano, S., Hiraoka, M., Yamada, M., Furuichi, T. and Mikoshiba, K. (1999) Calmodulin mediates calcium-dependent inactivation of the cerebellar type 1 inositol 1,4,5-trisphosphate receptor. Neuron 23, 799–808
- 13 Yamada, M., Miyawaki, A., Saito, K., Nakajima, T., Yamamoto-Hino, M., Ryo, Y., Furuichi, T. and Mikoshiba, K. (1995) The calmodulin-binding domain in the mouse type 1 inositol 1,4,5-trisphosphate receptor. Biochem. J. **308**, 83–88
- 14 Sipma, H., De Smet, P., Sienaert, I., Vanlingen, S., Missiaen, L., Parys, J. B. and De Smedt, H. (1999) Modulation of inositol 1,4,5-trisphosphate binding to the recombinant ligand-binding site of the type-1 inositol 1,4,5-trisphosphate receptor by Ca²⁺ and calmodulin. J. Biol. Chem. **274**, 12157–12162
- 15 Patel, S., Morris, S. A., Adkins, C. E., O'Beirne, G. and Taylor, C. W. (1997) Ca²⁺independent inhibition of inositol trisphosphate receptors by calmodulin: redistribution of calmodulin as a possible means of regulating Ca²⁺ mobilization. Proc. Natl. Acad. Sci. U.S.A. **94**, 11 627–11 632
- 16 Cardy, T. J. and Taylor, C. W. (1998) A novel role for calmodulin: Ca²⁺-independent inhibition of type-1 inositol trisphosphate receptors. Biochem. J. **334**, 447–455
- 17 Adkins, C. E., Morris, S. A., De Smedt, H., Sienaert, I., Torok, K. and Taylor, C. W. (2000) Ca²⁺-calmodulin inhibits Ca²⁺ release mediated by type-1, -2 and -3 inositol trisphosphate receptors. Biochem. J. **345**, 357–363
- Hirota, J., Michikawa, T., Natsume, T., Furuichi, T. and Mikoshiba, K. (1999) Calmodulin inhibits inositol 1,4,5-trisphosphate-induced calcium release through the purified and reconstituted inositol 1,4,5-trisphosphate receptor type 1. FEBS Lett. 456, 322–326

- 19 Missiaen, L., Parys, J. B., Weidema, A. F., Sipma, H., Vanlingen, S., De Smet, P., Callewaert, G. and De Smedt, H. (1999) The bell-shaped Ca²⁺ dependence of the inositol 1,4,5-trisphosphate-induced Ca²⁺ release is modulated by Ca²⁺/calmodulin. J. Biol. Chem. **274**, 13748–13751
- 20 Sugawara, H., Kurosaki, M., Takata, M. and Kurosaki, T. (1997) Genetic evidence for involvement of type 1, type 2 and type 3 inositol 1,4,5-trisphosphate receptors in signal transduction through the B-cell antigen receptor. EMBO J. 16, 3078–3088
- 21 Mignery, G. A., Newton, C. L., Archer, B. T. and Sudhof, T. C. (1990) Structure and expression of the rat inositol 1,4,5-trisphosphate receptor. J. Biol. Chem. 265, 12679–12685
- 22 Kaznacheyeva, E., Lupu, V. D. and Bezprozvanny, I. (1998) Single-channel properties of inositol (1,4,5)-trisphosphate receptor heterologously expressed in HEK-293 cells. J. Gen. Physiol. **111**, 847–856
- 23 Bezprozvanny, I. and Ehrlich, B. E. (1993) ATP modulates the function of inositol 1,4,5-trisphosphate-gated channels at two sites. Neuron 10, 1175–1184
- 24 Bezprozvanny, I. and Ehrlich, B. E. (1994) Inositol (1,4,5)-trisphosphate (InsP₃)-gated Ca channels from cerebellum: conduction properties for divalent cations and regulation by intraluminal calcium. J. Gen. Physiol. **104**, 821–856
- 25 Fabiato, A. (1988) Computer programs for calculating total from specified free or free from specified total ionic concentrations in aqueous solutions containing multiple metals and ligands. Methods Enzymol. **157**, 378–417
- 26 Horn, R. (1991) Estimating the number of channels in patch recordings. Biophys. J. ${\bf 60},\,433{-}439$
- 27 Colquhoun, D. and Hawkes, A. G. (1983) The principles of stochastic interpretation of ion-channel mechanisms. In Single-channel Recording (Sakmann, B. and Neher, E., eds.), pp. 135–174, Plenum Press, New York
- 28 Miyakawa, T., Maeda, A., Yamazawa, T., Hirose, K., Kurosaki, T. and Iino, M. (1999) Encoding of Ca²⁺ signals by differential expression of IP3 receptor subtypes. EMBO J. **18**, 1303–1308
- 29 Grynkiewicz, G., Poenie, M. and Tsien, R. Y. (1985) A new generation of Ca^{2+} indicators with greatly improved fluorescence properties. J. Biol. Chem. **260**, 3440–3450
- 30 Cardy, T. J., Traynor, D. and Taylor, C. W. (1997) Differential regulation of types-1 and -3 inositol trisphosphate receptors by cytosolic Ca²⁺. Biochem. J. **328**, 785–793
- 31 Tu, H., Miyakawa, T., Wang, Z., Glouchankova, L., lino, M. and Bezprozvanny, I. (2002) Functional characterization of the type 1 inositol 1,4,5-trisphosphate receptor coupling domain SII(+/-) splice variants and the *opisthotonos* mutant form. Biophys. J. **82**, 1995–2004
- 32 Ramos-Franco, J., Caenepeel, S., Fill, M. and Mignery, G. (1998) Single channel function of recombinant type-1 inositol 1,4,5-trisphosphate receptor ligand binding domain splice variants. Biophys. J. **75**, 2783–2793
- 33 Hidaka, H., Sasaki, Y., Tanaka, T., Endo, T., Ohno, S., Fujii, Y. and Nagata, T. (1981) *N*-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide, a calmodulin antagonist, inhibits cell proliferation. Proc. Natl. Acad. Sci. U.S.A. **78**, 4354–4357
- 34 Asano, M. (1989) Divergent pharmacological effects of three calmodulin antagonists, *N*-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide (W-7), chlorpromazine and calmidazolium, on isometric tension development and myosin light chain phosphorylation in intact bovine tracheal smooth muscle. J. Pharmacol. Exp. Ther. 251, 764–773
- 35 Ramos-Franco, J., Fill, M. and Mignery, G. A. (1998) Isoform-specific function of single inositol 1,4,5-trisphosphate receptor channels. Biophys. J. **75**, 834–839
- 36 Hagar, R. E., Burgstahler, A. D., Nathanson, M. H. and Ehrlich, B. E. (1998) Type III InsP3 receptor channel stays open in the presence of increased calcium. Nature (London) **396**, 81–84
- 37 Missiaen, L., Parys, J. B., Sienaert, I., Maes, K., Kunzelmann, K., Takahashi, M., Tanzawa, K. and De Smedt, H. (1998) Functional properties of the type-3 InsP3 receptor in 16HBE14o-bronchial mucosal cells. J. Biol. Chem. 273, 8983–8986
- 38 Swatton, J. E., Morris, S. A., Cardy, T. J. and Taylor, C. W. (1999) Type 3 inositol trisphosphate receptors in RINm5F cells are biphasically regulated by cytosolic Ca²⁺ and mediate quantal Ca²⁺ mobilization. Biochem. J. **344**, 55–60
- 39 Boehning, D. and Joseph, S. K. (2000) Functional properties of recombinant type I and type III inositol 1,4,5-trisphosphate receptor isoforms expressed in COS-7 cells. J. Biol. Chem. 275, 21492–21499
- 40 Mak, D. O., McBride, S. and Foskett, J. K. (2001) Regulation by Ca²⁺ and inositol 1,4,5-trisphosphate (InsP3) of single recombinant type 3 InsP3 receptor channels. Ca²⁺ activation uniquely distinguishes types 1 and 3 InsP3 receptors. J. Gen. Physiol. **117**, 435–446
- 41 Missiaen, L., DeSmedt, H., Bultynck, G., Vanlingen, S., Desmet, P., Callewaert, G. and Parys, J. B. (2000) Calmodulin increases the sensitivity of type 3 inositol-1,4,5trisphosphate receptors to Ca(2+) inhibition in human bronchial mucosal cells. Mol. Pharmacol. 57, 564–567

- 42 Islam, M. O., Yoshida, Y., Koga, T., Kojima, M., Kangawa, K. and Imai, S. (1996) Isolation and characterization of vascular smooth muscle inositol 1,4,5-trisphosphate receptor. Biochem. J. **316**, 295–302
- 43 Lin, C., Widjaja, J. and Joseph, S. K. (2000) The interaction of calmodulin with alternatively spliced isoforms of the type-I inositol trisphosphate receptor. J. Biol. Chem. 275, 2305–2311
- 44 Nakagawa, T., Okano, H., Furuichi, T., Aruga, J. and Mikoshiba, K. (1991) The subtypes of the mouse Inositol 1,4,5-trisphosphate receptor are expressed in a tissuespecific and developmentally specific manner. Proc. Natl. Acad. Sci. U.S.A. 88, 6244–6248

Received 6 December 2001/18 April 2002; accepted 25 April 2002 Published as BJ Immediate Publication 25 April 2002, DOI 10.1042/BJ20011789

- 45 Vanlingen, S., Sipma, H., De Smet, P., Callewaert, G., Missiaen, L., De Smedt, H. and Parys, J. B. (2000) Ca²⁺ and calmodulin differentially modulate myo-inositol 1,4,5trisphosphate (IP3)-binding to the recombinant ligand-binding domains of the various IP3 receptor isoforms. Biochem. J. **346**, 275–280
- 46 Kaftan, E. J., Ehrlich, B. E. and Watras, J. (1997) Inositol 1,4,5-trisphosphate (InsP3) and calcium interact to increase the dynamic range of InsP3 receptor-dependent calcium signaling. J. Gen. Physiol. **110**, 529–538
- 47 Mak, D. O., McBride, S. and Foskett, J. K. (1998) Inositol 1,4,5-trisphosphate activation of inositol trisphosphate receptor Ca²⁺ channel by ligand tuning of Ca²⁺ inhibition. Proc. Natl. Acad. Sci. U.S.A. **95**, 15821–15825