Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2002 Sep 1;366(Pt 2):399–404. doi: 10.1042/BJ20020339

Inducible nitric oxide synthase (NOS2) expressed in septic patients is nitrated on selected tyrosine residues: implications for enzymic activity.

Sophie Lanone 1, Philippe Manivet 1, Jacques Callebert 1, Jean-Marie Launay 1, Didier Payen 1, Michel Aubier 1, Jorge Boczkowski 1, Alexandre Mebazaa 1
PMCID: PMC1222810  PMID: 12097137

Abstract

Tyrosine nitration is a post-translational protein modification with potentially significant biological implications. In the present study we demonstrate, for the first time, that tyrosine residues of human inducible nitric oxide synthase (NOS2) can be nitrated by peroxynitrite in vitro, leading to a decreased activity. Moreover, we show that NOS2 expressed in a skeletal muscle from septic patients is nitrated on selective tyrosine residues belonging to a canonic sequence. This phenomenon could be an endogenous mechanism of in vivo modulation of NOS2 enzymic activity.

Full Text

The Full Text of this article is available as a PDF (431.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Biolo G., Toigo G., Ciocchi B., Situlin R., Iscra F., Gullo A., Guarnieri G. Metabolic response to injury and sepsis: changes in protein metabolism. Nutrition. 1997 Sep;13(9 Suppl):52S–57S. doi: 10.1016/s0899-9007(97)00206-2. [DOI] [PubMed] [Google Scholar]
  2. Blanchard-Fillion B., Souza J. M., Friel T., Jiang G. C., Vrana K., Sharov V., Barrón L., Schöneich C., Quijano C., Alvarez B. Nitration and inactivation of tyrosine hydroxylase by peroxynitrite. J Biol Chem. 2001 Oct 5;276(49):46017–46023. doi: 10.1074/jbc.M105564200. [DOI] [PubMed] [Google Scholar]
  3. Boczkowski J., Lisdero C. L., Lanone S., Samb A., Carreras M. C., Boveris A., Aubier M., Poderoso J. J. Endogenous peroxynitrite mediates mitochondrial dysfunction in rat diaphragm during endotoxemia. FASEB J. 1999 Sep;13(12):1637–1646. doi: 10.1096/fasebj.13.12.1637. [DOI] [PubMed] [Google Scholar]
  4. Bone R. C., Balk R. A., Cerra F. B., Dellinger R. P., Fein A. M., Knaus W. A., Schein R. M., Sibbald W. J. Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. The ACCP/SCCM Consensus Conference Committee. American College of Chest Physicians/Society of Critical Care Medicine. Chest. 1992 Jun;101(6):1644–1655. doi: 10.1378/chest.101.6.1644. [DOI] [PubMed] [Google Scholar]
  5. Bredt D. S., Snyder S. H. Nitric oxide mediates glutamate-linked enhancement of cGMP levels in the cerebellum. Proc Natl Acad Sci U S A. 1989 Nov;86(22):9030–9033. doi: 10.1073/pnas.86.22.9030. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Crane B. R., Arvai A. S., Ghosh D. K., Wu C., Getzoff E. D., Stuehr D. J., Tainer J. A. Structure of nitric oxide synthase oxygenase dimer with pterin and substrate. Science. 1998 Mar 27;279(5359):2121–2126. doi: 10.1126/science.279.5359.2121. [DOI] [PubMed] [Google Scholar]
  7. Crow J. P., Ye Y. Z., Strong M., Kirk M., Barnes S., Beckman J. S. Superoxide dismutase catalyzes nitration of tyrosines by peroxynitrite in the rod and head domains of neurofilament-L. J Neurochem. 1997 Nov;69(5):1945–1953. doi: 10.1046/j.1471-4159.1997.69051945.x. [DOI] [PubMed] [Google Scholar]
  8. Eiserich J. P., Hristova M., Cross C. E., Jones A. D., Freeman B. A., Halliwell B., van der Vliet A. Formation of nitric oxide-derived inflammatory oxidants by myeloperoxidase in neutrophils. Nature. 1998 Jan 22;391(6665):393–397. doi: 10.1038/34923. [DOI] [PubMed] [Google Scholar]
  9. Fischmann T. O., Hruza A., Niu X. D., Fossetta J. D., Lunn C. A., Dolphin E., Prongay A. J., Reichert P., Lundell D. J., Narula S. K. Structural characterization of nitric oxide synthase isoforms reveals striking active-site conservation. Nat Struct Biol. 1999 Mar;6(3):233–242. doi: 10.1038/6675. [DOI] [PubMed] [Google Scholar]
  10. Gath I., Closs E. I., Gödtel-Armbrust U., Schmitt S., Nakane M., Wessler I., Förstermann U. Inducible NO synthase II and neuronal NO synthase I are constitutively expressed in different structures of guinea pig skeletal muscle: implications for contractile function. FASEB J. 1996 Dec;10(14):1614–1620. doi: 10.1096/fasebj.10.14.9002553. [DOI] [PubMed] [Google Scholar]
  11. Hühmer A. F., Nishida C. R., Ortiz de Montellano P. R., Schöneich C. Inactivation of the inducible nitric oxide synthase by peroxynitrite. Chem Res Toxicol. 1997 May;10(5):618–626. doi: 10.1021/tx960188t. [DOI] [PubMed] [Google Scholar]
  12. Ichinose M., Sugiura H., Yamagata S., Koarai A., Shirato K. Increase in reactive nitrogen species production in chronic obstructive pulmonary disease airways. Am J Respir Crit Care Med. 2000 Aug;162(2 Pt 1):701–706. doi: 10.1164/ajrccm.162.2.9908132. [DOI] [PubMed] [Google Scholar]
  13. Lanone S., Mebazaa A., Heymes C., Henin D., Poderoso J. J., Panis Y., Zedda C., Billiar T., Payen D., Aubier M. Muscular contractile failure in septic patients: role of the inducible nitric oxide synthase pathway. Am J Respir Crit Care Med. 2000 Dec;162(6):2308–2315. doi: 10.1164/ajrccm.162.6.2001097. [DOI] [PubMed] [Google Scholar]
  14. Lanone S., Mebazaa A., Heymes C., Valleur P., Mechighel P., Payen D., Aubier M., Boczkowski J. Sepsis is associated with reciprocal expressional modifications of constitutive nitric oxide synthase (NOS) in human skeletal muscle: down-regulation of NOS1 and up-regulation of NOS3. Crit Care Med. 2001 Sep;29(9):1720–1725. doi: 10.1097/00003246-200109000-00011. [DOI] [PubMed] [Google Scholar]
  15. Nicholson S., Bonecini-Almeida M. da G., Lapa e Silva J. R., Nathan C., Xie Q. W., Mumford R., Weidner J. R., Calaycay J., Geng J., Boechat N. Inducible nitric oxide synthase in pulmonary alveolar macrophages from patients with tuberculosis. J Exp Med. 1996 May 1;183(5):2293–2302. doi: 10.1084/jem.183.5.2293. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Pan J., Burgher K. L., Szczepanik A. M., Ringheim G. E. Tyrosine phosphorylation of inducible nitric oxide synthase: implications for potential post-translational regulation. Biochem J. 1996 Mar 15;314(Pt 3):889–894. doi: 10.1042/bj3140889. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Sanders S. P. Nitric oxide in asthma. Pathogenic, therapeutic, or diagnostic? Am J Respir Cell Mol Biol. 1999 Aug;21(2):147–149. doi: 10.1165/ajrcmb.21.2.f158. [DOI] [PubMed] [Google Scholar]
  18. Sarver A., Scheffler N. K., Shetlar M. D., Gibson B. W. Analysis of peptides and proteins containing nitrotyrosine by matrix-assisted laser desorption/ionization mass spectrometry. J Am Soc Mass Spectrom. 2001 Apr;12(4):439–448. doi: 10.1016/S1044-0305(01)00213-6. [DOI] [PubMed] [Google Scholar]
  19. Savvides Savvas N., Scheiwein Michael, Bohme Catharina C., Arteel Gavin E., Karplus P. Andrew, Becker Katja, Schirmer R. Heiner. Crystal structure of the antioxidant enzyme glutathione reductase inactivated by peroxynitrite. J Biol Chem. 2001 Nov 8;277(4):2779–2784. doi: 10.1074/jbc.M108190200. [DOI] [PubMed] [Google Scholar]
  20. Souza J. M., Daikhin E., Yudkoff M., Raman C. S., Ischiropoulos H. Factors determining the selectivity of protein tyrosine nitration. Arch Biochem Biophys. 1999 Nov 15;371(2):169–178. doi: 10.1006/abbi.1999.1480. [DOI] [PubMed] [Google Scholar]
  21. Thoenes M., Förstermann U., Tracey W. R., Bleese N. M., Nüssler A. K., Scholz H., Stein B. Expression of inducible nitric oxide synthase in failing and non-failing human heart. J Mol Cell Cardiol. 1996 Jan;28(1):165–169. doi: 10.1006/jmcc.1996.0016. [DOI] [PubMed] [Google Scholar]
  22. Wedgwood S., McMullan D. M., Bekker J. M., Fineman J. R., Black S. M. Role for endothelin-1-induced superoxide and peroxynitrite production in rebound pulmonary hypertension associated with inhaled nitric oxide therapy. Circ Res. 2001 Aug 17;89(4):357–364. doi: 10.1161/hh1601.094983. [DOI] [PubMed] [Google Scholar]
  23. Wu W., Chen Y., Hazen S. L. Eosinophil peroxidase nitrates protein tyrosyl residues. Implications for oxidative damage by nitrating intermediates in eosinophilic inflammatory disorders. J Biol Chem. 1999 Sep 3;274(36):25933–25944. doi: 10.1074/jbc.274.36.25933. [DOI] [PubMed] [Google Scholar]
  24. Xia Y., Zweier J. L. Superoxide and peroxynitrite generation from inducible nitric oxide synthase in macrophages. Proc Natl Acad Sci U S A. 1997 Jun 24;94(13):6954–6958. doi: 10.1073/pnas.94.13.6954. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Yamakura F., Taka H., Fujimura T., Murayama K. Inactivation of human manganese-superoxide dismutase by peroxynitrite is caused by exclusive nitration of tyrosine 34 to 3-nitrotyrosine. J Biol Chem. 1998 Jun 5;273(23):14085–14089. doi: 10.1074/jbc.273.23.14085. [DOI] [PubMed] [Google Scholar]
  26. van der Vliet A., Eiserich J. P., Halliwell B., Cross C. E. Formation of reactive nitrogen species during peroxidase-catalyzed oxidation of nitrite. A potential additional mechanism of nitric oxide-dependent toxicity. J Biol Chem. 1997 Mar 21;272(12):7617–7625. doi: 10.1074/jbc.272.12.7617. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES