Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2002 Sep 15;366(Pt 3):965–970. doi: 10.1042/BJ20020321

Measurement of free and membrane-bound cathepsin G in human neutrophils using new sensitive fluorogenic substrates.

Sylvie Attucci 1, Brice Korkmaz 1, Luiz Juliano 1, Eric Hazouard 1, Catherine Girardin 1, Michèle Brillard-Bourdet 1, Sophie Réhault 1, Philippe Anthonioz 1, Francis Gauthier 1
PMCID: PMC1222843  PMID: 12088507

Abstract

Activated human polymorphonuclear neutrophils at inflammatory sites release the chymotrypsin-like protease cathepsin G, together with elastase and proteinase 3 (myeloblastin), from their azurophil granules. The low activity of cathepsin G on synthetic substrates seriously impairs studies designed to clarify its role in tissue inflammation. We have solved this problem by producing new peptide substrates with intramolecularly quenched fluorescence. These substrates were deduced from the sequence of putative protein targets of cathepsin G, including the reactive loop sequence of serpin inhibitors and the N-terminal domain of the protease-activated receptor of thrombin, PAR-1. Two substrates were selected, Abz-TPFSGQ-EDDnp and Abz-EPFWEDQ-EDDnp, that are cleaved very efficiently by cathepsin G but not by neutrophil elastase or proteinase 3, with specificity constants (k(cat)/K(m)) in the 10(5) M(-1).s(-1) range. They can be used to measure subnanomolar concentrations of free enzyme in vitro and at the surface of neutrophils purified from fresh human blood. Purified neutrophils express 0.02-0.7 pg of cathepsin G/cell (n=15) at their surface. This means that about 10(4) purified cells may be enough to record cathepsin G activity within minutes. This may be most important for investigating the role of cathepsin G as an inflammatory agent, especially in bronchoalveolar lavage fluids from patients with pulmonary inflammatory disorders.

Full Text

The Full Text of this article is available as a PDF (132.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bangalore N., Travis J. Comparison of properties of membrane bound versus soluble forms of human leukocytic elastase and cathepsin G. Biol Chem Hoppe Seyler. 1994 Oct;375(10):659–666. doi: 10.1515/bchm3.1994.375.10.659. [DOI] [PubMed] [Google Scholar]
  2. Bank U., Ansorge S. More than destructive: neutrophil-derived serine proteases in cytokine bioactivity control. J Leukoc Biol. 2001 Feb;69(2):197–206. [PubMed] [Google Scholar]
  3. Campbell E. J., Campbell M. A., Owen C. A. Bioactive proteinase 3 on the cell surface of human neutrophils: quantification, catalytic activity, and susceptibility to inhibition. J Immunol. 2000 Sep 15;165(6):3366–3374. doi: 10.4049/jimmunol.165.6.3366. [DOI] [PubMed] [Google Scholar]
  4. Caughey G. H. Serine proteinases of mast cell and leukocyte granules. A league of their own. Am J Respir Crit Care Med. 1994 Dec;150(6 Pt 2):S138–S142. doi: 10.1164/ajrccm/150.6_Pt_2.S138. [DOI] [PubMed] [Google Scholar]
  5. Chagas J. R., Juliano L., Prado E. S. Intramolecularly quenched fluorogenic tetrapeptide substrates for tissue and plasma kallikreins. Anal Biochem. 1991 Feb 1;192(2):419–425. doi: 10.1016/0003-2697(91)90558-b. [DOI] [PubMed] [Google Scholar]
  6. Chertov O., Ueda H., Xu L. L., Tani K., Murphy W. J., Wang J. M., Howard O. M., Sayers T. J., Oppenheim J. J. Identification of human neutrophil-derived cathepsin G and azurocidin/CAP37 as chemoattractants for mononuclear cells and neutrophils. J Exp Med. 1997 Aug 29;186(5):739–747. doi: 10.1084/jem.186.5.739. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cumashi A., Ansuini H., Celli N., De Blasi A., O'Brien P. J., Brass L. F., Molino M. Neutrophil proteases can inactivate human PAR3 and abolish the co-receptor function of PAR3 on murine platelets. Thromb Haemost. 2001 Mar;85(3):533–538. [PubMed] [Google Scholar]
  8. Ermolieff J., Duranton J., Petitou M., Bieth J. G. Heparin accelerates the inhibition of cathepsin G by mucus proteinase inhibitor: potent effect of O-butyrylated heparin. Biochem J. 1998 Mar 15;330(Pt 3):1369–1374. doi: 10.1042/bj3301369. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hof P., Mayr I., Huber R., Korzus E., Potempa J., Travis J., Powers J. C., Bode W. The 1.8 A crystal structure of human cathepsin G in complex with Suc-Val-Pro-PheP-(OPh)2: a Janus-faced proteinase with two opposite specificities. EMBO J. 1996 Oct 15;15(20):5481–5491. [PMC free article] [PubMed] [Google Scholar]
  10. Kolkenbrock H., Zimmermann J., Burmester G. R., Ulbrich N. Activation of progelatinase B by membranes of human polymorphonuclear granulocytes. Biol Chem. 2000 Jan;381(1):49–55. doi: 10.1515/BC.2000.007. [DOI] [PubMed] [Google Scholar]
  11. Loew D., Perrault C., Morales M., Moog S., Ravanat C., Schuhler S., Arcone R., Pietropaolo C., Cazenave J. P., van Dorsselaer A. Proteolysis of the exodomain of recombinant protease-activated receptors: prediction of receptor activation or inactivation by MALDI mass spectrometry. Biochemistry. 2000 Sep 5;39(35):10812–10822. doi: 10.1021/bi0003341. [DOI] [PubMed] [Google Scholar]
  12. Moriuchi H., Moriuchi M., Fauci A. S. Cathepsin G, a neutrophil-derived serine protease, increases susceptibility of macrophages to acute human immunodeficiency virus type 1 infection. J Virol. 2000 Aug;74(15):6849–6855. doi: 10.1128/jvi.74.15.6849-6855.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Nakajima K., Powers J. C., Ashe B. M., Zimmerman M. Mapping the extended substrate binding site of cathepsin G and human leukocyte elastase. Studies with peptide substrates related to the alpha 1-protease inhibitor reactive site. J Biol Chem. 1979 May 25;254(10):4027–4032. [PubMed] [Google Scholar]
  14. Newman S. L., Gootee L., Gabay J. E., Selsted M. E. Identification of constituents of human neutrophil azurophil granules that mediate fungistasis against Histoplasma capsulatum. Infect Immun. 2000 Oct;68(10):5668–5672. doi: 10.1128/iai.68.10.5668-5672.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Oliveira M. C., Hirata I. Y., Chagas J. R., Boschcov P., Gomes R. A., Figueiredo A. F., Juliano L. Intramolecularly quenched fluorogenic peptide substrates for human renin. Anal Biochem. 1992 May 15;203(1):39–46. doi: 10.1016/0003-2697(92)90040-e. [DOI] [PubMed] [Google Scholar]
  16. Owen C. A., Campbell E. J. Angiotensin II generation at the cell surface of activated neutrophils: novel cathepsin G-mediated catalytic activity that is resistant to inhibition. J Immunol. 1998 Feb 1;160(3):1436–1443. [PubMed] [Google Scholar]
  17. Owen C. A., Campbell E. J. The cell biology of leukocyte-mediated proteolysis. J Leukoc Biol. 1999 Feb;65(2):137–150. doi: 10.1002/jlb.65.2.137. [DOI] [PubMed] [Google Scholar]
  18. Owen C. A., Campbell M. A., Boukedes S. S., Campbell E. J. Inducible binding of bioactive cathepsin G to the cell surface of neutrophils. A novel mechanism for mediating extracellular catalytic activity of cathepsin G. J Immunol. 1995 Dec 15;155(12):5803–5810. [PubMed] [Google Scholar]
  19. Owen C. A., Campbell M. A., Sannes P. L., Boukedes S. S., Campbell E. J. Cell surface-bound elastase and cathepsin G on human neutrophils: a novel, non-oxidative mechanism by which neutrophils focus and preserve catalytic activity of serine proteinases. J Cell Biol. 1995 Nov;131(3):775–789. doi: 10.1083/jcb.131.3.775. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Powers J. C., Tanaka T., Harper J. W., Minematsu Y., Barker L., Lincoln D., Crumley K. V., Fraki J. E., Schechter N. M., Lazarus G. G. Mammalian chymotrypsin-like enzymes. Comparative reactivities of rat mast cell proteases, human and dog skin chymases, and human cathepsin G with peptide 4-nitroanilide substrates and with peptide chloromethyl ketone and sulfonyl fluoride inhibitors. Biochemistry. 1985 Apr 9;24(8):2048–2058. doi: 10.1021/bi00329a037. [DOI] [PubMed] [Google Scholar]
  21. Renesto P., Si-Tahar M., Moniatte M., Balloy V., Van Dorsselaer A., Pidard D., Chignard M. Specific inhibition of thrombin-induced cell activation by the neutrophil proteinases elastase, cathepsin G, and proteinase 3: evidence for distinct cleavage sites within the aminoterminal domain of the thrombin receptor. Blood. 1997 Mar 15;89(6):1944–1953. [PubMed] [Google Scholar]
  22. Réhault S., Brillard-Bourdet M., Juliano M. A., Juliano L., Gauthier F., Moreau T. New, sensitive fluorogenic substrates for human cathepsin G based on the sequence of serpin-reactive site loops. J Biol Chem. 1999 May 14;274(20):13810–13817. doi: 10.1074/jbc.274.20.13810. [DOI] [PubMed] [Google Scholar]
  23. Sambrano G. R., Huang W., Faruqi T., Mahrus S., Craik C., Coughlin S. R. Cathepsin G activates protease-activated receptor-4 in human platelets. J Biol Chem. 2000 Mar 10;275(10):6819–6823. doi: 10.1074/jbc.275.10.6819. [DOI] [PubMed] [Google Scholar]
  24. Schechter I., Berger A. On the size of the active site in proteases. I. Papain. Biochem Biophys Res Commun. 1967 Apr 20;27(2):157–162. doi: 10.1016/s0006-291x(67)80055-x. [DOI] [PubMed] [Google Scholar]
  25. Serveau C., Moreau T., Zhou G. X., ElMoujahed A., Chao J., Gauthier F. Inhibition of rat tissue kallikrein gene family members by rat kallikrein-binding protein and alpha 1-proteinase inhibitor. FEBS Lett. 1992 Sep 14;309(3):405–408. doi: 10.1016/0014-5793(92)80817-z. [DOI] [PubMed] [Google Scholar]
  26. Shafer W. M., Hubalek F., Huang M., Pohl J. Bactericidal activity of a synthetic peptide (CG 117-136) of human lysosomal cathepsin G is dependent on arginine content. Infect Immun. 1996 Nov;64(11):4842–4845. doi: 10.1128/iai.64.11.4842-4845.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Tanaka T., Minematsu Y., Reilly C. F., Travis J., Powers J. C. Human leukocyte cathepsin G. Subsite mapping with 4-nitroanilides, chemical modification, and effect of possible cofactors. Biochemistry. 1985 Apr 9;24(8):2040–2047. doi: 10.1021/bi00329a036. [DOI] [PubMed] [Google Scholar]
  28. Turkington P. T. Cathepsin G, a regulator of human vitamin K, dependent clotting factors and inhibitors. Thromb Res. 1992 Jul 15;67(2):147–155. doi: 10.1016/0049-3848(92)90134-v. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES