RNA hairpin-folding kinetics
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Based on the complete ensemble of hairpin conformations, a statis-
tical mechanical model that combines the eigenvalue solutions of the
rate matrix and the free-energy landscapes has been able to predict
the temperature-dependent folding rate, kinetic intermediates, and
folding pathways for hairpin-forming RNA sequences. At tempera-
tures higher than a “glass transition” temperature, Ty, the eigenval-
ues show a distinct time separation, and the rate-limiting step is a
two-state single exponential process determined by the slowest
eigenmode. At temperatures lower than Ty, no distinct time separa-
tion exists for the eigenvalues, hence multiple (slow) eigenmodes
contribute to the rate-determining processes, and the folding in-
volves the trapping and detrapping of kinetic intermediates. For a
21-nt sequence we studied, Ty is lower than the transition tempera-
ture, Try, for thermodynamic equilibrium folding. For T > T, starting
from the native state, the chain undergoes a biphasic unfolding
transition: a preequilibrated quasi-equilibrium macrostate is formed
followed by a rate-limiting two-state transition from the macrostate
to the unfolded state. For Ty < T < T, the chain undergoes a
two-state on-pathway folding transition, at which a nucleus is formed
by the base stacks close to the loop region before a rapid assembly of
the whole hairpin structure. For T < T, the multistate kinetics involve
kinetic trapping, causing the roll-over behavior in the rate-
temperature Arrhenius plot. The complex kinetic behaviors of RNA
hairpins may be a paradigm for the folding kinetics of large RNAs.

lucidation of the RNA-folding mechanism at the level of both
the secondary and tertiary structures are essential to the
understanding of RNA functions in transcription, splicing, and
translation. Over the recent few years, the folding kinetics of
Tetrahymena ribozyme and other large RNAs have been under
extensive investigation (1-7). These experiments have started to
shed light on the general features of RNA folding kinetics, including
the free-energy landscapes, folding cooperativity, pathways, kinetic
intermediates, and the rate-limiting steps of the folding. On the
other hand, the folding kinetics of the elementary steps of RNA,
namely the formation of hairpin structures, has not been very much
investigated yet. Since the early work of Porschke (8) and Crothers
and coworkers (9, 10), few studies have been devoted to the detailed
folding kinetics of RNA hairpins and other secondary structures.
Recently, the studies of the folding kinetics for RNA hairpins
(11), peptide B-hairpin (12-18), and DNA hairpins (19-25) have
become highly active. However, despite the active efforts on the
modeling of RNA folding (26-39), quantitative analysis based on
the first principle calculations has not been explored very much for
RNA hairpin-folding kinetics. Here we present a detailed folding-
kinetics analysis based on a statistical mechanical model. Our
model can provide a complete picture of the temperature-
dependent folding kinetics: the folding rate, cooperativity, path-
ways, and kinetic intermediates. Our results reveal a rugged RNA
folding energy landscape even for RNA structures as simple as
hairpins. The model is a combination of the master equation (40)
description for the rate process and the free-energy landscapes.
Although several authors have used the Monte Carlo and other
simulational approaches to modeling the RNA folding process
(35-38), what distinguishes the present approach from the other
approaches (e.g., Monte Carlo simulations) is that the conforma-
tional sampling in our model is complete and exact, and the model
can give analytical results that allow for stable predictions for the
long time dynamics and detailed analysis for the folding mecha-
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nisms. In addition, the solution of the master equation can give the
population kinetics that is measured directly in the folding
experiments.

Theory and Methods

Master Equation. Consider an ensemble of w chain conformations,
the rate of change for the population of the ith (i = 1, ... ,0)
conformation (equivalently the probability P; of finding the ith
conformation) is determined by the difference between the rate
of entering and leaving the state: dPi/dt = Zj.lkiP; — kiPi],
where k;; and kj; are the rates for transitions from state j to state
i and from state i to state j, respectively. By using vector p = col
(P1,...,P,), we can write the rate equation in a matrix form (the
master equation): dp/dt = M-p, where M is a w X w rate matrix
defined by M; = k;; for the off-diagonal elements i # j and
M;; = —Z,4k;; for the diagonal elements.

To obtain the full population kinetics p(f) from the master
equation, we diagonalize the rate matrix M and solve for the
eigenvalues A, (u =1, 2, ..., w) and eigenvectors n,, from which
the time development of the population of each and every confor-
mational state can be calculated as the following vector form:

p() = > cn e [1]
=1

where the coefficients ¢, values are determined by the initial
probability distribution p(0) at + = 0. Eq. 1 represents a
decomposition of the equilibration process into » independent
kinetic modes (eigenmodes), where each mode is represented by
the eigenvector n,, and the rate of the kinetic mode is given by
the corresponding eigenvalue | A, | . We label the eigenvalues
according to the order Ay = Ay = ... = A,

The eigenvalue spectrum contains (i) an equilibrium mode A, =
0 for p = 1 and (i) @ — 1 nonequilibrium kinetic relaxation modes
A < 0for > 1. The equilibrium mode guarantees the occurrence
of equilibration for any given initial condition. The overall rate
process is determined by the slow modes of small nonzero | A, |
values, especially if there exists a large gap between the slowest
nonequilibrium eigenvalue A, and the rest of the nonzero eigen-
values, i.e., if | Ay | << | A3 |, then the overall kinetics would be
determined by a single exponential process represented by the
kinetic mode ny with rate | A, | . Otherwise, the relaxation kinetics
would be multiexponential and involves multiple slow eigenmodes.

Transition Rates. We describe chain conformations in terms of base
pairs. All the conformations that contain the same set of base pairs
are classified as a “pair-based” conformational state. We allow one
and only one base pair to be formed or broken in a kinetic
transition, with the transition rate given by ko = ke 26 /kgT
(“+” for the formation and “—” for the breaking of the base pair).
In the above equation, prefactor k) is a rate constant, kg is the
Boltzmann constant, 7 is the temperature, and AG - is the free-
energy barrier for the transition. In our model, we use k) = k© =
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Fig. 1. The population kinetics for a 14-nt RNA sequence calculated from the
pair-based (symbols) and the stack-based (lines) conformational models.
There are 3,296 pair-based conformational states and 54 stack-based confor-
mational states for the hairpin chain. Py(t) and P4(t) are the fractional popu-
lation of the native state and the completely unfolded state, respectively. The
figure contains two sets of test results: P(,(?(t) and PﬁF)(t) for the folding kinetics
at T = 10°C, starting from the completely unfolded state, and P{’(t) and P{(t)
for the unfolding kinetics at T = 90°C, starting from the native state. We see
excellent agreement between the two models.

10"sec™! as derived from the kinetic experimental data for short
RNA hairpin (8). We assume that the barrier for the formation of
a base pair is caused by the restriction of the chain entropy AS
(because of the restriction of torsional angles, etc.) and is given by
AG = TAS, and the barrier for the disruption of a base pair is
caused by the energetic (enthalpic) cost AH to break the hydrogen
bonding and the base stacking interactions and is given by AG_ =
AH. Both AG and AG - are sequence-dependent. In our model,
AH, AS, and AG- are calculated by using a statistical mechanical
model for RNA folding (32, 41-43).

The choice of the transition states in the calculations of the rate
constants k- is a simplified assumption. This assumption is sup-
ported by the previous experimental and theoretical studies (12,
13). The transition rates k- satisfy the detailed balance principle
and involve no free adjustable parameter. Different choices of
transition states may give different details in the kinetics; however,
the general feature about the kinetics intermediates, single expo-
nential and multistate kinetics, etc., may remain unchanged.

A Reduced Conformational Model. The number of conformational
states grows exponentially with the chain length. For example, the
number of hairpin conformations increases from 138 for a 10-nt
chain to 24,666 for a 16-nt chain. The rapid increase of the
conformational ensemble greatly limits the applicability of the

master equation approach because of the large size of the rate
matrix M. We note that RNA hairpins are stabilized predominantly
by the base-stacking interactions. An isolated (unstacked) base pair
is unstable, because an interbase hydrogen bond is rather weak
because of the competition for the hydrogen bonds with water
molecules in the aqueous solution. The instability of the unstacked
base pairs suggests a classification of conformations according to
the stacking base pairs, i.e., all the conformations having the same
base stacks form a “stack-based” conformational state. A great
advantage of the use of the stack-based conformational states is the
significant reduction in the number of states in the rate matrix M.
For example, for a 16-nt chain the number of states is reduced from
24,666 pair-based conformations to 531 stack-based conformations.

Test of the Model. To test the model of the stack-based conforma-
tional states, we have calculated the detailed kinetics for a 14-nt
RNA sequence by using both the pair-based and stack-based
conformational models. As shown in Fig. 1, the results for the two
models show excellent agreement. Therefore, the stack-based con-
formational model can give a rigorous and accurate description of
the kinetics at the same level of the pair-based model. Our kinetic
calculation will be based on the stack-based conformational model.

Results and Discussion

We consider a 21-nt RNA sequence: UAUAUAUCGACAC-
GAUAUAUA. The 21-nt chain has w = 1,603 stack-based hairpin
conformations and a unique hairpin native state (1585) with a
triloop and 9 base pairs in the helical stem, as shown in Fig. 24.

Folding Thermodynamics. By using a statistical mechanical model for
RNA thermodynamics (32, 41, 42), we have evaluated the specific
heat of the 21-nt RNA as a function of temperature. The specific
heat curve (data not shown) has a single peak at the melting
temperature Tp, 62°C. Further calculations for the pairing
probability (data not shown) show that as temperature 7 is de-
creased, the native base pairs close to the loop region are stabilized
first, followed by a progressive formation of the helical stem. The
full hairpin structure is stabilized at T = T,,,, and further decrease
of the temperature enhances the stability of the native state. The
equilibrium folding pathway indicates that the base-pairing stability
decreases as base pairs move away from the loop region.

Folding Kinetics: General Features. We have examined the temper-
ature-dependent behavior of the folding and unfolding kinetics. For
each temperature, we evaluated the 1,603 X 1,603 rate matrix M
and solved for the eigenmodes — the eigenvalues A, and eigenvec-
torsn, (u=1,2,...,1,603). We then use Eq. 1 to calculate the
population kinetics p(#) as a linear superposition of the eigenmodes.
The relaxation kinetics p(f) depends on the starting distribution
p(0). To simulate the refolding under folding conditions at tem-
perature T below Ty, we follow the relaxation kinetics starting from
the completely unfolded conformation (state 1), which contains no

Fig. 2. (A) The native structure of the 21-nt RNA se-
quence. (B) The apparent relaxation rate kops (circles) and
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] the slowest eigenvalue A; (triangles) as a function of 1/kgT.
100 (C) The separation between eigenvalues A, and A3 of the
two slowest eigenmodes as a function of the temperature.
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Fig.3. (A)Ahistogram for the distribution of the eigenvalue spectrumat 7=
40°C. The equilibrium eigenmode A1 = 0 is not shown in the figure. (B) The
eigenvector n; for the slowest eigenvalue \,. The x axis represents the index
i for all 1,603 conformations, and the y axis represents the corresponding ith
component of nj.

base stacks. In the kinetic experiments, this corresponds to a
temperature jump from a very high temperature to temperature 7.
Similarly, to simulate the unfolding under unfolding condition at
temperature 7 higher than T}, we follow the unfolding relaxation
starting from the native conformation (state 1585). In experiments,
this corresponds to a temperature jump from a low temperature to
temperature 7.

To make connections to the experimentally measurable param-
eters, we extracted the apparent relaxation rate ko by fitting the
time development of the native population Pysgs(f) using an expo-
nential function e %, We then connected the apparent rate with
the eigenvalues of the rate matrix. As we discussed above, if there
exists a pronounced time separation in the eigenmodes, then the
rate process is determined by the slowest mode u = 2, and a single
exponential kinetics would be observed with rate constant kops = Ao.
Otherwise, the rate process would be determined by multiple slow
kinetic modes, and kops # A2. The comparison of kops and A; is
indicative of the kinetic cooperativity.

In Fig. 2 B and C we plot the temperature dependence of the
apparent rate constant kops, the slowest eigenvalue A, and the
separation between the first two slowest eigenvalues A, and As.
The figure shows distinctive features of the kinetics for tempera-
tures higher or lower than a characteristic temperature T, = 20°C.

At temperature T higher than T, the apparent rate ks agrees
with the slowest eigenvalue | A, | , and the rate-temperature
dependence shows a typical Chevron plot (44, 45) for the
two-state transitions, with a minimum rate near the melting
temperature T, = 62 . The agreement between kqps and | A3 |
suggests a time separation in the eigenmodes. Indeed, as shown
in Fig. 2C, there exists a large separation between A, and A3 for

T > Tg, and thus the folding (unfolding) transition is a single
exponential cooperative process.

At temperature T below T,, the apparent rate constant Kgps
deviates from | A | , and the temperature dependence of the rate
constants shows a roll-over behavior in the Arrhenius plot (44, 45).
This behavior implies that the folding cannot be described as a
single exponential process, and there are multiple kinetic modes
involved in the folding process. Indeed, Fig. 2C shows that for T
below T,, the gap between A, and A3 is small, and there exist
multiple slow kinetic modes; thus the folding is a multiexponential
noncooperative process. Here Ty, is defined as the temperature at
which the Arrhenius plot starts to show the roll-over (slope of the
Arrhenius plot = 0) at low 7. T, also can be defined as the
temperature below which the large time separation in the eigen-
value spectrum disappears.

To obtain a better understanding of the temperature depen-
dence of the kinetics, we have performed detailed investigation
for the kinetics at three representative temperatures: 7 = 40, 90,
and 10°C, corresponding to single exponential folding for T, <
T < Tn, single exponential unfolding for 7 > Ty,, and multiex-
ponential folding for T < T, respectively.

Temperature T = 40°C. In Fig. 3 we show the eigenvalue spectrum
Ap (4) and the eigenvector my (B) of the slowest nonzero
eigenvalue A,. The figure clearly shows a large gap between A,
and the rest of the eigenvalue spectrum. As a result, the
rate-limiting step of the kinetics would be determined by the
single slowest eigenmode ny, and the native structure would be
formed at a time scale tto1q =~ | A2 | ' = 1072 sec. The estimated
trold 1S consistent with the population kinetic shown in Fig. 4A4.
Fig. 3B for the eigenvector n, shows a two-state kinetic mode; the
completely unfolded conformation (state 1) is depleted and
converted to the native conformation (state 1585) without stable
intermediate states involved in the process.

The native state occupies 86.35% fractional population in
thermal equilibrium at 7 = 40°C. For an initial distribution with
100% population of (the completely unfolded) state 1, Eq. 1
gives the population kinetics for each and every state. The
population curves in Fig. 44 show no pronounced stable inter-
mediates during the folding process.

To explore the folding pathways, we have enumerated the
low-barrier folding routes 1—1585 exhaustively. We found that
all the lowest barrier routes are on-pathway, i.e., no nonnative
base pairs are formed. Fig. 4B is a plot for the “free-energy
landscape” as a function of the number of native base pairs for
all these pathways. For the lowest barrier pathways, from the
distribution of barriers, we found that a major folding pathway
would be the nucleation-zipping process (see the thick lines in
Fig. 4B). Along this major pathway, the folding would be

Fig. 4. (A) The population kinetics for the

folding relaxation starting from the un-
folded state 1at40°C. Results for states other
than states 1 and 1585 (native) are not
shown, because their populations never ex-
ceed 10% in the relaxation. (B) The free-
energy landscape and folding pathways. The
figure plots all the lowest barrier (equal to
59.27 kcal/mol) pathways from the unfolded
state 1 to the native state 1585. There are a
total of 2,224 such low-barrier pathways.
Only native base pairs are formed on these
pathways. The x axis is for the number of
native base pairs formed, and the y axis is the
free energy in kcal/mol. The kinetic barrier
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between individual states are not shown ex-
cept for the major pathway denoted by the
thick dashed and solid lines.
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Fig. 5. (A) The eigenvalue spectrum at T = 90°C. (B) The eigenvector n; for
the slowest eigenvalue A,. Also shown in the figure is the Boltzmann distri-
bution (circles) for states 34, 74, 332, 606, 1049, 1352, and 1585. We see an
excellent agreement between the equilibrium distribution and the corre-
sponding eigenvector components for these states.

initiated by the closure of the native triloop through the nucle-
ation of the consecutive native base stacks CG-GC and UC-GA
closest to the loop, followed by a rapid formation of the base
pairs in the stem. Other low-barrier pathways involve the closure
of nonnative larger loops and are slower than the major pathway.

From the (one-dimensional) kinetic barrier profile for the major
pathway in Fig. 4B, we found that the rate-limiting step is the
formation of the nucleation base stack UC-GA, which causes the
maximum decrease in entropy (AS = 35.5 entropy units) and thus
the maximum free-energy barrier TAS. In the rate-determining
state (%), bases U and A are in close proximity to form a pair (see
state 74) that could either separate or react to be stabilized by the
stacking interaction. From the free-energy landscape, we can
estimate the activation enthalpy as AH, = AH¥ = AHgue3s =
AHcg.cc = —8.0 kcal/mol. The activation enthalpy is negative,
because the rate-determining state (%) is less stable, and thus the
barrier-crossing rate is decreased when the temperature is in-
creased. We note that AH, also can be estimated from the slope at
T = 40°C of the Arrhenius plot in Fig. 2B: AH, = —d(Inkobs)/
d(1/T) = —9.4 kcal/mol, which is close to that derived from the
pathway analysis.

Temperature T = 90°C. Fig. 54 is a histogram for the distribution
of the eigenvalue spectrum A, at T = 90°C. There exists a large
gap between the slowest nonzero eigenvalue (A;) and the rest of
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the eigenvalue spectrum. Therefore, the rate-limiting step of the
kinetics would be determined by the u = 2 eigenmode n,.
Fig. 5B is a plot for the eigenvector n,. n, is composed of negative
components for states 34, 74, 332, 606, 1049, 1352, 1546, and 1585
and a large positive component for the completely unfolded state
1. Therefore, n, represents an unfolding kinetic mode that multiple
states are transformed into the completely unfolded state. But how
does the multistate kinetic mode reconcile with the single expo-
nential cooperative unfolding kinetics? In Fig. 5B, we compared the
eigenvector components of states 34, 74, 332, 606, 1049, 1352, 1546,
and 1585 and the Boltzmann equilibrium distribution of these
states; we found excellent agreement. Therefore, in the unfolding
process these states preequilibrate to form a quasi-equilibrium
macrostate, and the rate-determining step n, is a cooperative
transition from the preformed macrostate to the completely un-
folded state. During the transition, although the population of the
macrostate is decreased, the relative distribution of the conforma-
tions in the macrostate remains unchanged. The unfolding of the

chain occurs on a time scale ~ | A, | ' = 10727 sec, and the
formation of the quasi-equilibrium macrostate is a result of the fast
eigenmodes for p > 2 with a time scale ~ | A3 | 7! = 107> sec.

The estimated time scales are consistent with the population
kinetics shown in Fig. 6A4.

At T = 90°C, the completely unfolded state (1) occupies 98% of
the total population in equilibrium. Therefore, starting from the
native state (1585) at ¢ = 0, the relaxation is virtually an unfolding
reaction. The population kinetics shown in Fig. 64 is consistent with
our eigenmode analysis above, e.g., the preformation of the mac-
rostate for the multiple intermediates followed by the rate-
determining transition from the macrostate to the unfolded state.

To investigate the unfolding pathways, we have enumerated all
the possible low-barrier pathways exhaustively. In Fig. 6B we show
all the lowest barrier pathways. We found that all the lowest barrier
routes are on-pathway. A major fast pathway determined from the
barrier distribution would be the unzipping from the terminal of the
helical stem (see the thick lines in Fig. 6B). Other pathways have
higher kinetic barriers and thus give slower unfolding from the
native state.

Fig. 6B is a plot for the one-dimensional free-energy landscape
along the major pathway. The free-energy landscape shows that
states 1585, 1546, 1352, 1049, 606, 332, 74, and 34 form a basin that
is separated from the free-energy minimum for the unfolded state
by a high free-energy barrier (}). In the unfolding process, the states
that reside in the basin preequilibrate to form a macrostate before
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(A) Population kinetics for the unfolding relaxation starting from the native state 1585 at 90°C. Four on-pathway kinetic intermediates (1546, 1352, 332, and

74; see B for their structures) are formed in the unfolding process. The fractional populations of other states never exceed 10% during the relaxation and thus are not
shown. (B) The free-energy landscape and unfolding pathways. The figure shows all the 2,224 lowest barrier (equal to 62.6 kcal/mol) pathways from the native state
1585 to the unfolded state 1. Only native base pairs are formed on these pathways. The x axis is for the number of native base pairs formed, and the y axis is the free
energy in kcal/mol. The kinetic barrier between individual states is not shown except for the major pathway denoted by the thick dashed and solid lines.
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Fig. 7. (A) The eigenvalue spectrum at 10°C. (B) Population kinetics for the
folding from the fully unfolded state 1. Results for the states of which
populations never exceed 10% during the relaxation are not shown. In the
folding process, three kinetics intermediates, 655, 1209, and 1426, are formed
(see Fig. 8 for the structures).

transforming into the unfolded state. State 74 is at the bottom of the
basin and therefore is the most stable kinetic intermediate (as
shown in Fig. 64). The activation enthalpy for the unfolding
transition can be estimated from AH, = AH* — macrostate ==
AHgae1 — AHgaers = —(AHcg.cg + AHyc.ga) = 8 keal/mol +
13.3 kcal/mol = 21.3 kcal/mol. This result is consistent with the
result calculated from the slope of the Arrhenius plot at 7 = 90°C,
AH, = —d(In kobs)/d(1/T) = 23 kcal/mol. The positive activation
enthalpy corresponds to the energetic cost to break the base stacks
to unfold the hairpin.

Temperature T = 10°C. As shown in Fig. 74, there is no distinctive
time separation between the eigenmodes for 7 = 10°C. There-
fore, the (folding) relaxation would be a multistate process that
cannot be described by a single exponential kinetics.

To simulate the folding kinetics, we start with the completely
extended conformation (state 1) and follow the population
kinetics. Because the native state occupies more than 97% of the
total population, the relaxation process is virtually a folding
reaction. In Fig. 7B we plot the population kinetics for all the
states with fractional population no less than 10%.

Fig. 7B shows three kinetic intermediates: on-pathway (no non-
native base pairs formed) intermediate 655 formed at ~10~* sec,
and off-pathway (with nonnative pairs formed) intermediates 1426
and 1209 formed at ~1073 sec (see Fig. 8 for their structures). The
time scales of the formation of the intermediates can be estimated
also from the eigenvalues: eigenmodes n, and n3 involve the
formation of states 1209 and 1426, and n4 involves the formation of
state 655; hence, state 655 is formed at ~ | A4 | 7! = 10734 sec, and
states 1209 and 1426 are formed at ~ | Az | 7! = 107! sec.

Fig. 8 is a free-energy diagram for states 655, 1209, and 1426 and
their kinetically neighboring states. The intermediates are local
minima on the free-energy landscape, because they have lower free

energies than their neighboring states. The only exception is for
state 1472, which has a lower free energy than state 1209 but is
separated kinetically from 1209 by a notably high barrier. Kinetic
barriers between individual states are not shown in the figure.

To have a better understanding of how the intermediates are
formed, we have exhaustively enumerated all the possible low-
barrier pathways for the formation of 655 from state 1 and the
formation of 1209 and 1426 from states 1 and 655.

Formation of 655. The close proximity to state 1 (only three
steps away; see Fig. 84) causes the early formation of state 655.
State 1 — 655 is a fast process with a lowest total barrier of 19.9
kcal/mol. A typical 1 — 655 fast pathways would be 1 — 48 —
371 — 655 (see Fig. 84).

Formation of 1209 and 1426. Are states 1209 and 1426 predom-
inantly formed from state 1 or from the preformed intermediate
655? Because the lowest total barriers for 1 — 1209 (38.5 kcal/mol,
120 pathways) and 1 — 1426 (42.1 kcal/mol, 176 pathways) are
much smaller than the lowest barriers for 655 — 1209 (57.1
kcal/mol, 764 pathways) and 655 — 1426 (60.8 kcal/mol, 50
pathways), respectively, 1209 and 1426 are mainly caused by the
folding of state 1 (the completely extended conformation).

How Do States 655, 1209, and 1426 Leave Their Respective Kinetic
Traps and Fold to the Native State 1585? Detrapping of 1209. State
1209 is kinetically close to 1585 (only two steps away; see Fig. 8B).
The exhaustive enumeration of the low-barrier pathways gives the
lowest barrier downhill through pathway 1209 — 1472 — 1585 (see
Fig. 8B).

Detrapping of 1426. The low-barrier 1426 — 1585 pathways
give a large number of chain-sliding modes for the folding, where
a minimum number of bases are bulged out in each step to
reduce the kinetic barrier (see Fig. 8C).

Detrapping of 655. There are two types of low-barrier 655 —
1585 pathways depending on whether the chain is fully extended
before refolding (i.e., whether the pathway passes state 1; see Fig.
9). Most low-barrier pathways (73.3 kcal/mol, total of 22,240
routes) pass state 1. A typical pathway is to refold from state 1
through a nucleation-zipping process (see Figs. 4B and 9) after a
complete unfolding (655 — 1). The complete unfolding of state 655
costs 25 kcal/mol in enthalpy, and the nucleation-zipping pathway
has an enthalpic barrier of —8 kcal/mol, and thus we would expect
a positive activation barrier for folding of state 655. A smaller
portion of the low-barrier pathways (72.2 kcal/mol, a total of 9,945
routes) detour around state 1, corresponding to refolding without
being fully extended. For example, there are 1,924 such pathways
that approach 1585 via 1209 (see Fig. 9).

Conclusions

Previous chemical kinetics type models for RNA hairpin and duplex
formation cannot account for the sequence-dependent multiple
pathways and the formation of misfolded kinetic intermediates (8,

Fig.8.

Zhang and Chen

The free-energy diagram of states 655, 1209, and 1426 and their kinetically neighboring states. The (negative) numbers are the free energies (in kcal/mol)
of the corresponding states.
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Fig.9. The free-energy landscape and the low-barrier pathways at T = 10°C
for the detrapping and refolding of state 655. The vertical axis is the free
energy in kcal/mol, and the horizontal coordinates (N, NN) are the number of
(native, nonnative) base pairs of the states. The thick lines show typical
refolding pathways with and without complete unfolding.

9). Here we have analyzed the detailed thermodynamics and
kinetics of a representative 21-nt hairpin-forming RNA. Unlike
previous approaches (13, 35-37), our model is based on the
complete ensemble of all the possible hairpin conformations. The
21-nt RNA sequence that we investigated undergoes a two-state
cooperative thermodynamic transition at 7y, = 60°C. In the equi-
librium folding process, as temperature is decreased the native base
pairs close to the loop region are formed, followed by a zipping
process for the formation of the whole hairpin structure.

Our kinetic model is a combination of the eigenvalue and
eigenvector solutions for the rate matrix and free-energy land-
scapes. The eigenvalue solution reveals a characteristic temperature
T, for the folding kinetics. For T > T, there exists a large gap
between the lowest nonzero eigenvalue and the rest of the eigen-
value spectrum, and for 7' > Ty, such a gap is absent. For the RNA
sequence we investigated, T, = 20°C (<T},). The folding kinetics
shows distinctive behavior in different temperature regimes defined
by the characteristic temperatures Ty and Tr,. For T = Ty, the
unfolding relaxation shows a biphasic on-pathway kinetics, fast
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formation of a preequilibrated macrostate followed by a rate-
limiting cooperative transition from the macrostate to the unfolded
state. For T, < T < Ty, the chain folds through a rate-limiting
nucleation for the consecutive base stacks UC-GA and CG-CG,
which are closest to loop region, followed by a rapid assembly of the
whole structure. The nucleation process leads to a negative appar-
ent activation enthalpy. At further lower temperatures 7 < Ty, the
minima on the free-energy landscape are stabilized and become
deep kinetic traps. As a result, the chain is trapped in the on- and
off-pathway kinetic intermediates. We call temperature 7T, a “glass
transition temperature.” For the 21-nt RNA we investigated, the
chain leaves the on-pathway trap through on-pathway transitions to
the native state, and the chain leaves the off-pathway traps either
by complete unfolding before refolding to the native state through
a nucleation-zipping process or by partial unfolding/folding. Be-
cause of the multistate kinetics, the rate-temperature curve shows
a roll-over Arrhenius plot, and the folding kinetics deviates from
the two-state single exponential behavior.

Combined with the energy-landscape analysis, the solution of the
eigenmodes of the rate matrix can give much profound folding
kinetic information about the kinetics intermediates, folding coop-
erativity, activation barrier, and the rate-limiting step(s) and folding
pathways. The model presented here also has limitations. The
present analysis is limited to hairpin conformations and is not
suitable for the prediction of the large RNA folding kinetics.
Nevertheless, we show here that even for the folding of simple
hairpin conformations, RNA folding kinetics shows a variety of
temperature-dependent behaviors. RNA hairpin folding may be a
paradigm for the folding of more complex RNA structures.

The general features of RNA hairpin-folding intermediates,
negative activation barrier, and non-Arrhenius kinetics have been
observed in a series of remarkable experiments for DNA and
peptide hairpins (12, 19-21). The characteristic folding kinetics of
RNA, DNA, and peptide hairpins may have the same origins. For
example, the negative activation enthalpy associated with the
entropic nucleation barrier is responsible for the nucleation-zipping
kinetics, and multiple pathways involving the detrapping from the
misfolded intermediates cause a positive apparent activation en-
thalpy and non-Arrhenius kinetics (46, 47).
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