Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 Jan 1;369(Pt 1):185–189. doi: 10.1042/BJ20021193

New enzyme belonging to the family of molybdenum-free nitrate reductases.

Alexey N Antipov 1, Dimitry Y Sorokin 1, Nikolay P L'Vov 1, J Gijs Kuenen 1
PMCID: PMC1223060  PMID: 12238951

Abstract

A novel molybdenum-free nitrate reductase was isolated from the obligate chemolithoautotrophic and facultative anaerobic, (halo)alkaliphilic sulphur-oxidizing bacterium Thioalkalivibrio nitratireducens strain ALEN 2. The enzyme was found to contain vanadium and haem c as cofactors. Its native molecular mass was determined as 195 kDa, and the enzyme consists of four identical subunits with apparent molecular masses of 57 kDa. Apart from nitrate, the enzyme can utilize nitrite, chlorate, bromate, selenate and sulphite as electron acceptors. Moreover, it also has a haloperoxidase activity.

Full Text

The Full Text of this article is available as a PDF (147.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Almeida M., Filipe S., Humanes M., Maia M. F., Melo R., Severino N., da Silva J. A., Fraústo da Silva J. J., Wever R. Vanadium haloperoxidases from brown algae of the Laminariaceae family. Phytochemistry. 2001 Jul;57(5):633–642. doi: 10.1016/s0031-9422(01)00094-2. [DOI] [PubMed] [Google Scholar]
  2. Antipov A. N., Lyalikova N. N., Khijniak T. V., L'vov N. P. Molybdenum-free nitrate reductases from vanadate-reducing bacteria. FEBS Lett. 1998 Dec 18;441(2):257–260. doi: 10.1016/s0014-5793(98)01510-5. [DOI] [PubMed] [Google Scholar]
  3. Antipov A. N., Lyalikova N. N., L'vov N. P. Vanadium-binding protein excreted by vanadate-reducing bacteria. IUBMB Life. 2000 Feb;49(2):137–141. doi: 10.1080/15216540050022467. [DOI] [PubMed] [Google Scholar]
  4. Berry E. A., Trumpower B. L. Simultaneous determination of hemes a, b, and c from pyridine hemochrome spectra. Anal Biochem. 1987 Feb 15;161(1):1–15. doi: 10.1016/0003-2697(87)90643-9. [DOI] [PubMed] [Google Scholar]
  5. DAVIS B. J. DISC ELECTROPHORESIS. II. METHOD AND APPLICATION TO HUMAN SERUM PROTEINS. Ann N Y Acad Sci. 1964 Dec 28;121:404–427. doi: 10.1111/j.1749-6632.1964.tb14213.x. [DOI] [PubMed] [Google Scholar]
  6. Eady R. R. Vanadium nitrogenases of Azotobacter. Met Ions Biol Syst. 1995;31:363–405. [PubMed] [Google Scholar]
  7. Edman P., Begg G. A protein sequenator. Eur J Biochem. 1967 Mar;1(1):80–91. doi: 10.1007/978-3-662-25813-2_14. [DOI] [PubMed] [Google Scholar]
  8. Jones B. E., Grant W. D., Duckworth A. W., Owenson G. G. Microbial diversity of soda lakes. Extremophiles. 1998 Aug;2(3):191–200. doi: 10.1007/s007920050060. [DOI] [PubMed] [Google Scholar]
  9. Kengen S. W., Rikken G. B., Hagen W. R., van Ginkel C. G., Stams A. J. Purification and characterization of (per)chlorate reductase from the chlorate-respiring strain GR-1. J Bacteriol. 1999 Nov;181(21):6706–6711. doi: 10.1128/jb.181.21.6706-6711.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  11. Martínez Murillo F., Gugliuzza T., Senko J., Basu P., Stolz J. F. A heme-C-containing enzyme complex that exhibits nitrate and nitrite reductase activity from the dissimilatory iron-reducing bacterium Geobacter metallireducens. Arch Microbiol. 1999 Nov;172(5):313–320. doi: 10.1007/s002030050785. [DOI] [PubMed] [Google Scholar]
  12. Moreno-Vivián C., Cabello P., Martínez-Luque M., Blasco R., Castillo F. Prokaryotic nitrate reduction: molecular properties and functional distinction among bacterial nitrate reductases. J Bacteriol. 1999 Nov;181(21):6573–6584. doi: 10.1128/jb.181.21.6573-6584.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Nesterenko M. V., Tilley M., Upton S. J. A simple modification of Blum's silver stain method allows for 30 minute detection of proteins in polyacrylamide gels. J Biochem Biophys Methods. 1994 Apr;28(3):239–242. doi: 10.1016/0165-022x(94)90020-5. [DOI] [PubMed] [Google Scholar]
  14. Philippot L., Højberg O. Dissimilatory nitrate reductases in bacteria. Biochim Biophys Acta. 1999 Jul 7;1446(1-2):1–23. doi: 10.1016/s0167-4781(99)00072-x. [DOI] [PubMed] [Google Scholar]
  15. Schröder I., Rech S., Krafft T., Macy J. M. Purification and characterization of the selenate reductase from Thauera selenatis. J Biol Chem. 1997 Sep 19;272(38):23765–23768. doi: 10.1074/jbc.272.38.23765. [DOI] [PubMed] [Google Scholar]
  16. Sorokin D. Y., Kuenen J. G., Jetten M. S. Denitrification at extremely high pH values by the alkaliphilic, obligately chemolithoautotrophic, sulfur-oxidizing bacterium Thioalkalivibrio denitrificans strain ALJD. Arch Microbiol. 2001 Feb;175(2):94–101. doi: 10.1007/s002030000210. [DOI] [PubMed] [Google Scholar]
  17. Sorokin D. Y., Lysenko A. M., Mityushina L. L., Tourova T. P., Jones B. E., Rainey F. A., Robertson L. A., Kuenen G. J. Thioalkalimicrobium aerophilum gen. nov., sp. nov. and Thioalkalimicrobium sibericum sp. nov., and Thioalkalivibrio versutus gen. nov., sp. nov., Thioalkalivibrio nitratis sp.nov., novel and Thioalkalivibrio denitrificancs sp. nov., novel obligately alkaliphilic and obligately chemolithoautotrophic sulfur-oxidizing bacteria from soda lakes. Int J Syst Evol Microbiol. 2001 Mar;51(Pt 2):565–580. doi: 10.1099/00207713-51-2-565. [DOI] [PubMed] [Google Scholar]
  18. Vilter H. Vanadium-dependent haloperoxidases. Met Ions Biol Syst. 1995;31:325–362. [PubMed] [Google Scholar]
  19. Zumft W. G. Cell biology and molecular basis of denitrification. Microbiol Mol Biol Rev. 1997 Dec;61(4):533–616. doi: 10.1128/mmbr.61.4.533-616.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES