Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 Feb 15;370(Pt 1):255–263. doi: 10.1042/BJ20021505

Evidence for secretion-like coupling involving pp60src in the activation and maintenance of store-mediated Ca2+ entry in mouse pancreatic acinar cells.

Pedro C Redondo 1, Ana I Lajas 1, Ginés M Salido 1, Antonio Gonzalez 1, Juan A Rosado 1, José A Pariente 1
PMCID: PMC1223155  PMID: 12423207

Abstract

Store-mediated Ca2+ entry (SMCE) is one of the main pathways for Ca2+ influx in non-excitable cells. Recent studies favour a secretion-like coupling mechanism to explain SMCE, where Ca2+ entry is mediated by an interaction of the endoplasmic reticulum (ER) with the plasma membrane (PM) and is modulated by the actin cytoskeleton. To explore this possibility further we have now investigated the role of the actin cytoskeleton in the activation and maintenance of SMCE in pancreatic acinar cells, a more specialized secretory cell type which might be an ideal cellular model to investigate further the properties of the secretion-like coupling model. In these cells, the cytoskeletal disrupters cytochalasin D and latrunculin A inhibited both the activation and maintenance of SMCE. In addition, stabilization of a cortical actin barrier by jasplakinolide prevented the activation, but not the maintenance, of SMCE, suggesting that, as for secretion, the actin cytoskeleton plays a double role in SMCE as a negative modulator of the interaction between the ER and PM, but is also required for this mechanism, since the cytoskeleton disrupters impaired Ca2+ entry. Finally, depletion of the intracellular Ca2+ stores induces cytoskeletal association and activation of pp60(src), which is independent on Ca2+ entry. pp60(src) activation requires the integrity of the actin cytoskeleton and participates in the initial phase of the activation of SMCE in pancreatic acinar cells.

Full Text

The Full Text of this article is available as a PDF (276.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Babnigg G., Bowersox S. R., Villereal M. L. The role of pp60c-src in the regulation of calcium entry via store-operated calcium channels. J Biol Chem. 1997 Nov 21;272(47):29434–29437. doi: 10.1074/jbc.272.47.29434. [DOI] [PubMed] [Google Scholar]
  2. Berridge M. J. Capacitative calcium entry. Biochem J. 1995 Nov 15;312(Pt 1):1–11. doi: 10.1042/bj3120001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bertagnolli M. E., Hudson L. A., Stetsenko G. Y. Selective association of the tyrosine kinases Src, Fyn, and Lyn with integrin-rich actin cytoskeletons of activated, nonaggregated platelets. Biochem Biophys Res Commun. 1999 Jul 14;260(3):790–798. doi: 10.1006/bbrc.1999.0985. [DOI] [PubMed] [Google Scholar]
  4. Bozem M., Kuhlmann S., Blum R., Feick P., Schulz I. Hormone-stimulated calcium release is inhibited by cytoskeleton-disrupting toxins in AR4-2J cells. Cell Calcium. 2000 Aug;28(2):73–82. doi: 10.1054/ceca.2000.0133. [DOI] [PubMed] [Google Scholar]
  5. Bubb M. R., Senderowicz A. M., Sausville E. A., Duncan K. L., Korn E. D. Jasplakinolide, a cytotoxic natural product, induces actin polymerization and competitively inhibits the binding of phalloidin to F-actin. J Biol Chem. 1994 May 27;269(21):14869–14871. [PubMed] [Google Scholar]
  6. Camello C., Pariente J. A., Salido G. M., Camello P. J. Sequential activation of different Ca2+ entry pathways upon cholinergic stimulation in mouse pancreatic acinar cells. J Physiol. 1999 Apr 15;516(Pt 2):399–408. doi: 10.1111/j.1469-7793.1999.0399v.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Flanagan M. D., Lin S. Cytochalasins block actin filament elongation by binding to high affinity sites associated with F-actin. J Biol Chem. 1980 Feb 10;255(3):835–838. [PubMed] [Google Scholar]
  8. Fukui Y., O'Brien M. C., Hanafusa H. Deletions in the SH2 domain of p60v-src prevent association with the detergent-insoluble cellular matrix. Mol Cell Biol. 1991 Mar;11(3):1207–1213. doi: 10.1128/mcb.11.3.1207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. García L. J., Rosado J. A., González A., Jensen R. T. Cholecystokinin-stimulated tyrosine phosphorylation of p125FAK and paxillin is mediated by phospholipase C-dependent and -independent mechanisms and requires the integrity of the actin cytoskeleton and participation of p21rho. Biochem J. 1997 Oct 15;327(Pt 2):461–472. doi: 10.1042/bj3270461. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Grimaldi M., Favit A., Alkon D. L. cAMP-induced cytoskeleton rearrangement increases calcium transients through the enhancement of capacitative calcium entry. J Biol Chem. 1999 Nov 19;274(47):33557–33564. doi: 10.1074/jbc.274.47.33557. [DOI] [PubMed] [Google Scholar]
  11. Hartwig J. H. Mechanisms of actin rearrangements mediating platelet activation. J Cell Biol. 1992 Sep;118(6):1421–1442. doi: 10.1083/jcb.118.6.1421. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Holda J. R., Blatter L. A. Capacitative calcium entry is inhibited in vascular endothelial cells by disruption of cytoskeletal microfilaments. FEBS Lett. 1997 Feb 17;403(2):191–196. doi: 10.1016/s0014-5793(97)00051-3. [DOI] [PubMed] [Google Scholar]
  13. Hu X. Q., Singh N., Mukhopadhyay D., Akbarali H. I. Modulation of voltage-dependent Ca2+ channels in rabbit colonic smooth muscle cells by c-Src and focal adhesion kinase. J Biol Chem. 1998 Feb 27;273(9):5337–5342. doi: 10.1074/jbc.273.9.5337. [DOI] [PubMed] [Google Scholar]
  14. Kiselyov K., Xu X., Mozhayeva G., Kuo T., Pessah I., Mignery G., Zhu X., Birnbaumer L., Muallem S. Functional interaction between InsP3 receptors and store-operated Htrp3 channels. Nature. 1998 Dec 3;396(6710):478–482. doi: 10.1038/24890. [DOI] [PubMed] [Google Scholar]
  15. Kunzelmann-Marche C., Freyssinet J. M., Martínez M. C. Regulation of phosphatidylserine transbilayer redistribution by store-operated Ca2+ entry: role of actin cytoskeleton. J Biol Chem. 2000 Nov 13;276(7):5134–5139. doi: 10.1074/jbc.M007924200. [DOI] [PubMed] [Google Scholar]
  16. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  17. Lockwich T., Singh B. B., Liu X., Ambudkar I. S. Stabilization of cortical actin induces internalization of transient receptor potential 3 (Trp3)-associated caveolar Ca2+ signaling complex and loss of Ca2+ influx without disruption of Trp3-inositol trisphosphate receptor association. J Biol Chem. 2001 Aug 27;276(45):42401–42408. doi: 10.1074/jbc.M106956200. [DOI] [PubMed] [Google Scholar]
  18. Lutz M. P., Esser I. B., Flossmann-Kast B. B., Vogelmann R., Lührs H., Friess H., Büchler M. W., Adler G. Overexpression and activation of the tyrosine kinase Src in human pancreatic carcinoma. Biochem Biophys Res Commun. 1998 Feb 13;243(2):503–508. doi: 10.1006/bbrc.1997.8043. [DOI] [PubMed] [Google Scholar]
  19. Ma Hong-Tao, Venkatachalam Kartik, Parys Jan B., Gill Donald L. Modification of store-operated channel coupling and inositol trisphosphate receptor function by 2-aminoethoxydiphenyl borate in DT40 lymphocytes. J Biol Chem. 2001 Dec 10;277(9):6915–6922. doi: 10.1074/jbc.M107755200. [DOI] [PubMed] [Google Scholar]
  20. Muallem S., Kwiatkowska K., Xu X., Yin H. L. Actin filament disassembly is a sufficient final trigger for exocytosis in nonexcitable cells. J Cell Biol. 1995 Feb;128(4):589–598. doi: 10.1083/jcb.128.4.589. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Nozu F., Owyang C., Tsunoda Y. Involvement of phosphoinositide 3-kinase and its association with pp60src in cholecystokinin-stimulated pancreatic acinar cells. Eur J Cell Biol. 2000 Nov;79(11):803–809. doi: 10.1078/0171-9335-00108. [DOI] [PubMed] [Google Scholar]
  22. Osusky M., Taylor S. J., Shalloway D. Autophosphorylation of purified c-Src at its primary negative regulation site. J Biol Chem. 1995 Oct 27;270(43):25729–25732. doi: 10.1074/jbc.270.43.25729. [DOI] [PubMed] [Google Scholar]
  23. Parekh A. B., Penner R. Store depletion and calcium influx. Physiol Rev. 1997 Oct;77(4):901–930. doi: 10.1152/physrev.1997.77.4.901. [DOI] [PubMed] [Google Scholar]
  24. Pariente J. A., Camello C., Camello P. J., Salido G. M. Release of calcium from mitochondrial and nonmitochondrial intracellular stores in mouse pancreatic acinar cells by hydrogen peroxide. J Membr Biol. 2001 Jan 1;179(1):27–35. doi: 10.1007/s002320010034. [DOI] [PubMed] [Google Scholar]
  25. Parker E. M., Zaman M. M., Freedman S. D. GP2, a GPI-anchored protein in the apical plasma membrane of the pancreatic acinar cell, co-immunoprecipitates with src kinases and caveolin. Pancreas. 2000 Oct;21(3):219–225. doi: 10.1097/00006676-200010000-00001. [DOI] [PubMed] [Google Scholar]
  26. Patterson R. L., van Rossum D. B., Gill D. L. Store-operated Ca2+ entry: evidence for a secretion-like coupling model. Cell. 1999 Aug 20;98(4):487–499. doi: 10.1016/s0092-8674(00)81977-7. [DOI] [PubMed] [Google Scholar]
  27. Ribeiro C. M., Reece J., Putney J. W., Jr Role of the cytoskeleton in calcium signaling in NIH 3T3 cells. An intact cytoskeleton is required for agonist-induced [Ca2+]i signaling, but not for capacitative calcium entry. J Biol Chem. 1997 Oct 17;272(42):26555–26561. doi: 10.1074/jbc.272.42.26555. [DOI] [PubMed] [Google Scholar]
  28. Rosado J. A., Graves D., Sage S. O. Tyrosine kinases activate store-mediated Ca2+ entry in human platelets through the reorganization of the actin cytoskeleton. Biochem J. 2000 Oct 15;351(Pt 2):429–437. [PMC free article] [PubMed] [Google Scholar]
  29. Rosado J. A., Jenner S., Sage S. O. A role for the actin cytoskeleton in the initiation and maintenance of store-mediated calcium entry in human platelets. Evidence for conformational coupling. J Biol Chem. 2000 Mar 17;275(11):7527–7533. doi: 10.1074/jbc.275.11.7527. [DOI] [PubMed] [Google Scholar]
  30. Rosado J. A., Rosenzweig I., Harding S., Sage S. O. Tumor necrosis factor-alpha inhibits store-mediated Ca2+ entry in the human hepatocellular carcinoma cell line HepG2. Am J Physiol Cell Physiol. 2001 Jun;280(6):C1636–C1644. doi: 10.1152/ajpcell.2001.280.6.C1636. [DOI] [PubMed] [Google Scholar]
  31. Rosado J. A., Sage S. O. Coupling between inositol 1,4,5-trisphosphate receptors and human transient receptor potential channel 1 when intracellular Ca2+ stores are depleted. Biochem J. 2000 Sep 15;350(Pt 3):631–635. [PMC free article] [PubMed] [Google Scholar]
  32. Rosado J. A., Sage S. O. Farnesylcysteine analogues inhibit store-regulated Ca2+ entry in human platelets: evidence for involvement of small GTP-binding proteins and actin cytoskeleton. Biochem J. 2000 Apr 1;347(Pt 1):183–192. [PMC free article] [PubMed] [Google Scholar]
  33. Rosado J. A., Sage S. O. Phosphoinositides are required for store-mediated calcium entry in human platelets. J Biol Chem. 2000 Mar 31;275(13):9110–9113. doi: 10.1074/jbc.275.13.9110. [DOI] [PubMed] [Google Scholar]
  34. Rosado J. A., Sage S. O. Regulation of plasma membrane Ca2+-ATPase by small GTPases and phosphoinositides in human platelets. J Biol Chem. 2000 Jun 30;275(26):19529–19535. doi: 10.1074/jbc.M001319200. [DOI] [PubMed] [Google Scholar]
  35. Rosado Juan A., González Antonio, Salido Ginés M., Pariente Jose A. Effects of reactive oxygen species on actin filament polymerisation and amylase secretion in mouse pancreatic acinar cells. Cell Signal. 2002 Jun;14(6):547–556. doi: 10.1016/s0898-6568(01)00273-x. [DOI] [PubMed] [Google Scholar]
  36. Sage S. O., Reast R., Rink T. J. ADP evokes biphasic Ca2+ influx in fura-2-loaded human platelets. Evidence for Ca2+ entry regulated by the intracellular Ca2+ store. Biochem J. 1990 Feb 1;265(3):675–680. doi: 10.1042/bj2650675. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Sargeant P., Farndale R. W., Sage S. O. ADP- and thapsigargin-evoked Ca2+ entry and protein-tyrosine phosphorylation are inhibited by the tyrosine kinase inhibitors genistein and methyl-2,5-dihydroxycinnamate in fura-2-loaded human platelets. J Biol Chem. 1993 Aug 25;268(24):18151–18156. [PubMed] [Google Scholar]
  38. Shurety W., Stewart N. L., Stow J. L. Fluid-phase markers in the basolateral endocytic pathway accumulate in response to the actin assembly-promoting drug Jasplakinolide. Mol Biol Cell. 1998 Apr;9(4):957–975. doi: 10.1091/mbc.9.4.957. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Spector I., Shochet N. R., Kashman Y., Groweiss A. Latrunculins: novel marine toxins that disrupt microfilament organization in cultured cells. Science. 1983 Feb 4;219(4584):493–495. doi: 10.1126/science.6681676. [DOI] [PubMed] [Google Scholar]
  40. Treviño C. L., Serrano C. J., Beltrán C., Felix R., Darszon A. Identification of mouse trp homologs and lipid rafts from spermatogenic cells and sperm. FEBS Lett. 2001 Nov 30;509(1):119–125. doi: 10.1016/s0014-5793(01)03134-9. [DOI] [PubMed] [Google Scholar]
  41. Tsunoda Y., Yoshida H., Africa L., Steil G. J., Owyang C. Src kinase pathways in extracellular Ca(2+)-dependent pancreatic enzyme secretion. Biochem Biophys Res Commun. 1996 Oct 23;227(3):876–884. doi: 10.1006/bbrc.1996.1599. [DOI] [PubMed] [Google Scholar]
  42. Vaca L., Kunze D. L. Depletion of intracellular Ca2+ stores activates a Ca(2+)-selective channel in vascular endothelium. Am J Physiol. 1994 Oct;267(4 Pt 1):C920–C925. doi: 10.1152/ajpcell.1994.267.4.C920. [DOI] [PubMed] [Google Scholar]
  43. Valentijn J. A., Valentijn K., Pastore L. M., Jamieson J. D. Actin coating of secretory granules during regulated exocytosis correlates with the release of rab3D. Proc Natl Acad Sci U S A. 2000 Feb 1;97(3):1091–1095. doi: 10.1073/pnas.97.3.1091. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Valentijn K. M., Gumkowski F. D., Jamieson J. D. The subapical actin cytoskeleton regulates secretion and membrane retrieval in pancreatic acinar cells. J Cell Sci. 1999 Jan;112(Pt 1):81–96. doi: 10.1242/jcs.112.1.81. [DOI] [PubMed] [Google Scholar]
  45. Vazquez G., Lievremont J. P., St J Bird G., Putney J. W., Jr Human Trp3 forms both inositol trisphosphate receptor-dependent and receptor-independent store-operated cation channels in DT40 avian B lymphocytes. Proc Natl Acad Sci U S A. 2001 Sep 11;98(20):11777–11782. doi: 10.1073/pnas.201238198. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Waltenberger J., Uecker A., Kroll J., Frank H., Mayr U., Bjorge J. D., Fujita D., Gazit A., Hombach V., Levitzki A. A dual inhibitor of platelet-derived growth factor beta-receptor and Src kinase activity potently interferes with motogenic and mitogenic responses to PDGF in vascular smooth muscle cells. A novel candidate for prevention of vascular remodeling. Circ Res. 1999 Jul 9;85(1):12–22. doi: 10.1161/01.res.85.1.12. [DOI] [PubMed] [Google Scholar]
  47. Xie Qiang, Zhang Yan, Zhai Changbin, Bonanno Joseph A. Calcium influx factor from cytochrome P-450 metabolism and secretion-like coupling mechanisms for capacitative calcium entry in corneal endothelial cells. J Biol Chem. 2002 Feb 26;277(19):16559–16566. doi: 10.1074/jbc.M109518200. [DOI] [PubMed] [Google Scholar]
  48. Yao Y., Ferrer-Montiel A. V., Montal M., Tsien R. Y. Activation of store-operated Ca2+ current in Xenopus oocytes requires SNAP-25 but not a diffusible messenger. Cell. 1999 Aug 20;98(4):475–485. doi: 10.1016/s0092-8674(00)81976-5. [DOI] [PubMed] [Google Scholar]
  49. Yule D. I., Kim E. T., Williams J. A. Tyrosine kinase inhibitors attenuate "capacitative" Ca2+ influx in rat pancreatic acinar cells. Biochem Biophys Res Commun. 1994 Aug 15;202(3):1697–1704. doi: 10.1006/bbrc.1994.2130. [DOI] [PubMed] [Google Scholar]
  50. Zubov A. I., Kaznacheeva E. V., Nikolaev A. V., Alexeenko V. A., Kiselyov K., Muallem S., Mozhayeva G. N. Regulation of the miniature plasma membrane Ca(2+) channel I(min) by inositol 1,4,5-trisphosphate receptors. J Biol Chem. 1999 Sep 10;274(37):25983–25985. doi: 10.1074/jbc.274.37.25983. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES