Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 Mar 1;370(Pt 2):417–427. doi: 10.1042/BJ20020917

A non-modular type B feruloyl esterase from Neurospora crassa exhibits concentration-dependent substrate inhibition.

Valerie F Crepin 1, Craig B Faulds 1, Ian F Connerton 1
PMCID: PMC1223187  PMID: 12435269

Abstract

Feruloyl esterases, a subclass of the carboxylic acid esterases (EC 3.1.1.1), are able to hydrolyse the ester bond between the hydroxycinnamic acids and sugars present in the plant cell wall. The enzymes have been classified as type A or type B, based on their substrate specificity for aromatic moieties. We show that Neurospora crassa has the ability to produce multiple ferulic acid esterase activities depending upon the length of fermentation with either sugar beet pulp or wheat bran substrates. A gene identified on the basis of its expression on sugar beet pulp has been cloned and overexpressed in Pichia pastoris. The gene encodes a single-domain ferulic acid esterase, which represents the first report of a non-modular type B enzyme (fae-1 gene; GenBank accession no. AJ293029). The purified recombinant protein has been shown to exhibit concentration-dependent substrate inhibition (K(m) 0.048 mM, K (i) 2.5 mM and V(max) 8.2 units/mg against methyl 3,4-dihydroxycinnamate). The kinetic behaviour of the non-modular enzyme is discussed in terms of the diversity in the roles of the feruloyl esterases in the mobilization of plant cell wall materials and their respective modes of action.

Full Text

The Full Text of this article is available as a PDF (311.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Basaran P., Hang Y. D. Purification and characterization of acetyl esterase from Candida guilliermondii. Lett Appl Microbiol. 2000 Feb;30(2):167–171. doi: 10.1046/j.1472-765x.2000.00681.x. [DOI] [PubMed] [Google Scholar]
  2. Becker D. M., Guarente L. High-efficiency transformation of yeast by electroporation. Methods Enzymol. 1991;194:182–187. doi: 10.1016/0076-6879(91)94015-5. [DOI] [PubMed] [Google Scholar]
  3. Blum D. L., Kataeva I. A., Li X. L., Ljungdahl L. G. Feruloyl esterase activity of the Clostridium thermocellum cellulosome can be attributed to previously unknown domains of XynY and XynZ. J Bacteriol. 2000 Mar;182(5):1346–1351. doi: 10.1128/jb.182.5.1346-1351.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Blum D. L., Li X. L., Chen H., Ljungdahl L. G. Characterization of an acetyl xylan esterase from the anaerobic fungus Orpinomyces sp. strain PC-2. Appl Environ Microbiol. 1999 Sep;65(9):3990–3995. doi: 10.1128/aem.65.9.3990-3995.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Borneman W. S., Akin D. E., VanEseltine W. P. Effect of phenolic monomers on ruminal bacteria. Appl Environ Microbiol. 1986 Dec;52(6):1331–1339. doi: 10.1128/aem.52.6.1331-1339.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Borneman W. S., Ljungdahl L. G., Hartley R. D., Akin D. E. Purification and partial characterization of two feruloyl esterases from the anaerobic fungus Neocallimastix strain MC-2. Appl Environ Microbiol. 1992 Nov;58(11):3762–3766. doi: 10.1128/aem.58.11.3762-3766.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  8. Brenner S. The molecular evolution of genes and proteins: a tale of two serines. Nature. 1988 Aug 11;334(6182):528–530. doi: 10.1038/334528a0. [DOI] [PubMed] [Google Scholar]
  9. Castanares A., Wood T. M. Purification and characterization of a feruloyl/p-coumaroyl esterase from solid-state cultures of the aerobic fungus Penicillium pinophilum. Biochem Soc Trans. 1992 Aug;20(3):275S–275S. doi: 10.1042/bst020275s. [DOI] [PubMed] [Google Scholar]
  10. Dalrymple B. P., Swadling Y., Cybinski D. H., Xue G. P. Cloning of a gene encoding cinnamoyl ester hydrolase from the ruminal bacterium Butyrivibrio fibrisolvens E14 by a novel method. FEMS Microbiol Lett. 1996 Oct 1;143(2-3):115–120. doi: 10.1111/j.1574-6968.1996.tb08469.x. [DOI] [PubMed] [Google Scholar]
  11. Degrassi G., Kojic M., Ljubijankic G., Venturi V. The acetyl xylan esterase of Bacillus pumilus belongs to a family of esterases with broad substrate specificity. Microbiology. 2000 Jul;146(Pt 7):1585–1591. doi: 10.1099/00221287-146-7-1585. [DOI] [PubMed] [Google Scholar]
  12. Dente L., Cesareni G., Cortese R. pEMBL: a new family of single stranded plasmids. Nucleic Acids Res. 1983 Mar 25;11(6):1645–1655. doi: 10.1093/nar/11.6.1645. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Dodson G., Wlodawer A. Catalytic triads and their relatives. Trends Biochem Sci. 1998 Sep;23(9):347–352. doi: 10.1016/s0968-0004(98)01254-7. [DOI] [PubMed] [Google Scholar]
  14. Donaghy J. A., Bronnenmeier K., Soto-Kelly P. F., McKay A. M. Purification and characterization of an extracellular feruloyl esterase from the thermophilic anaerobe Clostridium stercorarium. J Appl Microbiol. 2000 Mar;88(3):458–466. doi: 10.1046/j.1365-2672.2000.00983.x. [DOI] [PubMed] [Google Scholar]
  15. Faulds C. B., Williamson G. Ferulic acid esterase from Aspergillus niger: purification and partial characterization of two forms from a commercial source of pectinase. Biotechnol Appl Biochem. 1993 Jun;17(Pt 3):349–359. [PubMed] [Google Scholar]
  16. Faulds C. B., Williamson G. Release of ferulic acid from wheat bran by a ferulic acid esterase (FAE-III) from Aspergillus niger. Appl Microbiol Biotechnol. 1995 Nov;43(6):1082–1087. doi: 10.1007/BF00166929. [DOI] [PubMed] [Google Scholar]
  17. Faulds C. B., Williamson G. The purification and characterization of 4-hydroxy-3-methoxycinnamic (ferulic) acid esterase from Streptomyces olivochromogenes. J Gen Microbiol. 1991 Oct;137(10):2339–2345. doi: 10.1099/00221287-137-10-2339. [DOI] [PubMed] [Google Scholar]
  18. Ferreira L. F., Araújo A., Duarte A. N. Nematode larvae in fossilized animal coprolites from lower and middle Pleistocene sites, central Italy. J Parasitol. 1993 Jun;79(3):440–442. [PubMed] [Google Scholar]
  19. Fillingham I. J., Kroon P. A., Williamson G., Gilbert H. J., Hazlewood G. P. A modular cinnamoyl ester hydrolase from the anaerobic fungus Piromyces equi acts synergistically with xylanase and is part of a multiprotein cellulose-binding cellulase-hemicellulase complex. Biochem J. 1999 Oct 1;343(Pt 1):215–224. [PMC free article] [PubMed] [Google Scholar]
  20. Fry S. C. Phenolic components of the primary cell wall. Feruloylated disaccharides of D-galactose and L-arabinose from spinach polysaccharide. Biochem J. 1982 May 1;203(2):493–504. doi: 10.1042/bj2030493. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Juge N., Williamson G., Puigserver A., Cummings N. J., Connerton I. F., Faulds C. B. High-level production of recombinant Aspergillus niger cinnamoyl esterase (FAEA) in the methylotrophic yeast Pichia pastoris. FEMS Yeast Res. 2001 Jul;1(2):127–132. doi: 10.1111/j.1567-1364.2001.tb00023.x. [DOI] [PubMed] [Google Scholar]
  22. Koseki T., Furuse S., Iwano K., Sakai H., Matsuzawa H. An Aspergillus awamori acetylesterase: purification of the enzyme, and cloning and sequencing of the gene. Biochem J. 1997 Sep 1;326(Pt 2):485–490. doi: 10.1042/bj3260485. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Kroon P. A., Faulds C. B., Brézillon C., Williamson G. Methyl phenylalkanoates as substrates to probe the active sites of esterases. Eur J Biochem. 1997 Aug 15;248(1):245–251. doi: 10.1111/j.1432-1033.1997.00245.x. [DOI] [PubMed] [Google Scholar]
  24. Kroon P. A., Faulds C. B., Williamson G. Purification and characterization of a novel esterase induced by growth of Aspergillus niger on sugar-beet pulp. Biotechnol Appl Biochem. 1996 Jun;23(Pt 3):255–262. [PubMed] [Google Scholar]
  25. Kroon P. A., Williamson G., Fish N. M., Archer D. B., Belshaw N. J. A modular esterase from Penicillium funiculosum which releases ferulic acid from plant cell walls and binds crystalline cellulose contains a carbohydrate binding module. Eur J Biochem. 2000 Dec;267(23):6740–6752. doi: 10.1046/j.1432-1033.2000.01742.x. [DOI] [PubMed] [Google Scholar]
  26. Kroon P. A., Williamson G. Release of ferulic acid from sugar-beet pulp by using arabinanase, arabinofuranosidase and an esterase from Aspergillus niger. Biotechnol Appl Biochem. 1996 Jun;23(Pt 3):263–267. [PubMed] [Google Scholar]
  27. Margolles-Clark E., Tenkanen M., Söderlund H., Penttilä M. Acetyl xylan esterase from Trichoderma reesei contains an active-site serine residue and a cellulose-binding domain. Eur J Biochem. 1996 May 1;237(3):553–560. doi: 10.1111/j.1432-1033.1996.0553p.x. [DOI] [PubMed] [Google Scholar]
  28. Mastropaolo W., Yourno J. An ultraviolet spectrophotometric assay for alpha-naphthyl acetate and alpha-naphthyl butyrate esterases. Anal Biochem. 1981 Jul 15;115(1):188–193. doi: 10.1016/0003-2697(81)90544-3. [DOI] [PubMed] [Google Scholar]
  29. McDermid K. P., Forsberg C. W., MacKenzie C. R. Purification and properties of an acetylxylan esterase from Fibrobacter succinogenes S85. Appl Environ Microbiol. 1990 Dec;56(12):3805–3810. doi: 10.1128/aem.56.12.3805-3810.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Orbach M. J., Porro E. B., Yanofsky C. Cloning and characterization of the gene for beta-tubulin from a benomyl-resistant mutant of Neurospora crassa and its use as a dominant selectable marker. Mol Cell Biol. 1986 Jul;6(7):2452–2461. doi: 10.1128/mcb.6.7.2452. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Patterson T. A., Dean M. Preparation of high titer lambda phage lysates. Nucleic Acids Res. 1987 Aug 11;15(15):6298–6298. doi: 10.1093/nar/15.15.6298. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Prates J. A., Tarbouriech N., Charnock S. J., Fontes C. M., Ferreira L. M., Davies G. J. The structure of the feruloyl esterase module of xylanase 10B from Clostridium thermocellum provides insights into substrate recognition. Structure. 2001 Dec;9(12):1183–1190. doi: 10.1016/s0969-2126(01)00684-0. [DOI] [PubMed] [Google Scholar]
  33. Ralet M. C., Faulds C. B., Williamson G., Thibault J. F. Degradation of feruloylated oligosaccharides from sugar-beet pulp and wheat bran by ferulic acid esterases from Aspergillus niger. Carbohydr Res. 1994 Oct 17;263(2):257–269. doi: 10.1016/0008-6215(94)00177-4. [DOI] [PubMed] [Google Scholar]
  34. Shoham Y., Lamed R., Bayer E. A. The cellulosome concept as an efficient microbial strategy for the degradation of insoluble polysaccharides. Trends Microbiol. 1999 Jul;7(7):275–281. doi: 10.1016/s0966-842x(99)01533-4. [DOI] [PubMed] [Google Scholar]
  35. Thomas G. H., Connerton I. F., Fincham J. R. Molecular cloning, identification and transcriptional analysis of genes involved in acetate utilization in Neurospora crassa. Mol Microbiol. 1988 Sep;2(5):599–606. doi: 10.1111/j.1365-2958.1988.tb00068.x. [DOI] [PubMed] [Google Scholar]
  36. Williamson G., Faulds C. B., Kroon P. A. Specificity of ferulic acid (feruloyl) esterases. Biochem Soc Trans. 1998 May;26(2):205–209. doi: 10.1042/bst0260205. [DOI] [PubMed] [Google Scholar]
  37. Williamson G., Kroon P. A., Faulds C. B. Hairy plant polysaccharides: a close shave with microbial esterases. Microbiology. 1998 Aug;144(Pt 8):2011–2023. doi: 10.1099/00221287-144-8-2011. [DOI] [PubMed] [Google Scholar]
  38. de Vries R. P., Visser J. Aspergillus enzymes involved in degradation of plant cell wall polysaccharides. Microbiol Mol Biol Rev. 2001 Dec;65(4):497-522, table of contents. doi: 10.1128/MMBR.65.4.497-522.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. de Vries Ronald P., vanKuyk Patricia A., Kester Harry C. M., Visser Jaap. The Aspergillus niger faeB gene encodes a second feruloyl esterase involved in pectin and xylan degradation and is specifically induced in the presence of aromatic compounds. Biochem J. 2002 Apr 15;363(Pt 2):377–386. doi: 10.1042/0264-6021:3630377. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES