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The ability to investigate the transcription of thousands of genes
concurrently by using DNA microarrays offers both major scientific
opportunities and significant analytical challenges. Here we de-
scribe GABRIEL, a rule-based system of computer programs designed
to apply domain-specific and procedural knowledge systematically
and uniformly for the analysis and interpretation of data from DNA
microarrays. GABRIEL’s problem-solving rules direct stereotypical
tasks, whereas domain-specific knowledge pertains to gene func-
tions and relationships or to experimental conditions. Additionally,
GABRIEL can learn novel rules through genetic algorithms, which
define patterns that best match the data being analyzed and can
identify groupings in gene expression profiles preordered by
chromosomal position or by a nonsupervised algorithm such as
hierarchical clustering. GABRIEL subsystems explain the logic that
underlies conclusions and provide a graphical interface and inter-
active platform for the acquisition of new knowledge. The present
report compares GABRIEL’s output with published findings in which
expert knowledge has been applied post hoc to microarray group-
ings generated by hierarchical clustering.

GABRIEL � machine learning

A lthough DNA microarrays now enable the expression of
thousands of genes to be assessed simultaneously at the

transcription level, the interpretation of microarray data remains
a significant challenge. Analysis of microarrays has used both
unsupervised methods that group genes showing quantitative
similarities in expression (see reviews in refs. 1–3) and ap-
proaches that exploit machine knowledge in a supervised man-
ner during the course of gene grouping (e.g., refs. 4–8). While
unsupervised methods such as hierarchical clustering, K-means
clustering, and the generation of self-organizing maps are en-
tirely statistical, the assignment of biological relevance to the
resulting gene groupings involves the post hoc application of
knowledge, and interpretation may vary widely according to the
expertise and experience of individual users. Often, the param-
eters used to produce sensible classifications are not explicitly
defined or transparent to others.

Expert knowledge can be incorporated into computer systems
to accomplish defined tasks and can be formulated as rules that
consist of premises and conclusions. One of the earliest rule-
based systems to focus successfully on a biomedical problem was
MYCIN, which used modules of knowledge acquired from infec-
tious disease experts to analyze clinical and laboratory data and
make recommendations to physician practitioners for the diag-
nosis and treatment of infections (9–11). The premises of each
MYCIN rule contained conditions that, if satisfied, allowed a
specified conclusion to be made. MYCIN also could explain in
English how a conclusion was reached by reciting the premises
on which it was based and could gain new knowledge by a
rule-acquisition function. MYCIN rules were discrete and largely
independent, allowing the program to flexibly increase its base
of knowledge (9, 10, 12). The MYCIN inference engine EMYCIN
and its successors have since been used for a variety of diagnostic
purposes (13–17).

Here we describe GABRIEL (Genetic Analysis By Rules Incor-
porating Expert Logic), a rule-based computer system designed
to apply domain-specific and procedural knowledge systemati-
cally for the analysis and interpretation of data from DNA
microarrays. GABRIEL, which has some of the key features of
MYCIN, stores knowledge in the form of preformatted rules or as
rules acquired from users through a graphical interface; it then
applies this knowledge during the process of gene classification.
A rule-explanation capability makes explicit and transparent to
users the criteria and reasoning used by GABRIEL to generate
groupings. The knowledge contained in GABRIEL rules also
allows inferences to be made about the significance of changes
in gene expression, the mechanisms underlying these changes,
and genetic regulatory relationships. This initial description of
GABRIEL compares the program’s output with published conclu-
sions reached by investigators that have interpreted microarray
results generated by hierarchical clustering (18).

Methods and Results
Description of GABRIEL. GABRIEL includes three components that
were also integral to MYCIN (9, 10) (Fig. 1): a consultation system
that applies rules to analyze and interpret microarray data, an
explanation module that indicates the basis for conclusions (for
example, by indicating why a particular gene expression profile
satisfies the premises of a rule while another profile does not),
and a rule acquisition module, which provides a graphical and
verbal interface that allows users to build new rules or modify
existing ones. The format for GABRIEL rules is

IF Premise 1 OP Premise 2 . . .
THEN Conclusion A . . .
ELSE Conclusion B . . .,
where OP is a logical operator, which can be AND, OR, or

NOR (i.e., neither).
Four general types of rules currently are used by GABRIEL.

Pattern-based rules identify genes whose expression profiles
conform quantitatively and temporally to specified conditions.
Proband-based rules identify genes (e.g., gene Y) whose profiles
are similar in configuration to that of a specified gene or group
of genes (i.e., the proband, gene X). Similarity is defined by a
modified Pearson correlation coefficient formula that substi-
tutes a zero center, for mean-center, correlation coefficient
(Zxy) (19), where X(t) is the expression level of the proband gene
at time t and Y(t) is the expression level of the gene being tested.
The basic proband rule selects genes whose correlation coeffi-
cient, with respect to the proband(s), is greater than a user-
specified or default threshold and sorts them according to extent
of correlation.

Abbreviations: GABRIEL, Genetic Analysis By Rules Incorporating Expert Logic; GA, genetic
algorithm; FDR, false discovery rate; I�E, immediate�early.
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This mode of use of correlation coefficient allows users to
identify gene expression profiles that correlate negatively with
the proband’s or the profiles of genes whose up- or down-
regulation temporally anticipates or follows the proband’s by a
specified interval. Rules that execute these tasks are described in
Figs. 5–9 and Tables 1–3, which are published as supporting
information on the PNAS web site, www.pnas.org.

Data-quality rules examine the reliability of the dataset and
assess the certainty of conclusions reached by GABRIEL. A
signal-to-noise ratio algorithm determines whether a change in
expression consequent to the event being analyzed (signal)
exceeds the variation occurring in the absence of the event
(noise); similar algorithms have been used previously in infor-
mation systems, telecommunication systems, and medical imag-
ing systems to analyze data quality (20–22). Another data-
quality rule that uses bootstrapping statistical algorithms (23–25)
randomly permutes gene expression data from different time
points to further assess the effects of experimental noise and
determine the chances of a conclusion being false (i.e., the false
discovery rate, FDR). The output from data-quality rules may
lead a user to modify threshold values, for example, to examine
the effects of a threshold alteration on a FDR that is unaccept-
ably high. Mechanism�causality rules enable GABRIEL to infer
causality from experimentally induced perturbations (for exam-
ple, a particular mutation, or whether protein synthesis, phos-
phorylation, proteolysis, etc., was required for an observed
alteration in transcription); such analyses may involve chaining
of the conclusions of one rule with premises of another.

A key component of GABRIEL is a machine learning system
that enables the program to also learn new rules directly from

data (Fig 1). Pattern-search rules learned by GABRIEL are
designed to identify relationships in a preordered dataset or to
select randomly generated patterns that match observed gene
expression profiles. GABRIEL’s continuity�gap algorithm (Fig. 6)
can detect profile similarities in a dataset generated, for example,
by hierarchical clustering or by the congruence of expression
level with chromosomal position. This algorithm calculates the
correlation coefficient between two contiguous nodes (e.g., the
levels of expression for genes A and B), generates the continuity
AB if the value exceeds a defined threshold, and then determines
the extent of correlation between expression of each succeeding
gene and the previous one—until the correlation coefficient falls
below the threshold, breaking the continuity and producing
a ‘‘gap.’’ When the number of genes in a continuity exceeds a
user-defined threshold and any gaps remain shorter than a
specified value, the continuity is terminated, identifying and
delineating a group of genes whose expression profiles are
similar. As values for continuity length, gap length, and threshold
of correlation are specified by users, the criteria for selection are
explicit and can be stated in a rule format. A related rule (the
continuity�proband rule) averages the parameters of expression
for genes within a continuity and uses this value to identify genes
that may appear at other locations in a dendrogram—thus
effectively allowing inclusion of a gene in multiple clusters.
These rules have proved useful for learning new probands from
a dataset and for identifying groups of coordinately regulated
and linearly contiguous genes on bacterial chromosomes (26).
Genes identified by GABRIEL can be members of multiple
groupings (e.g., gene A can simultaneously be a member of the
coordinately regulated gene group A, a regulator of gene B, and
a target of gene C).

Genetic algorithms (GAs), which use the concepts of muta-
tion, recombination, and survival of the fittest to evolve a
population of patterns were invented by Holland (27). They have
been used previously to automate computer programming (28),
predict interactions between proteins (29, 30), analyze biomo-
lecular sequence alignment and RNA folding (31, 32), identify
structure-activity relationships (33), and reverse-engineer met-
abolic pathways (34). GABRIEL’s GA (Fig. 2) evolves patterns that
fit gene expression profiles generated from DNA microarrays.
Parameters derived from first-generation patterns are mutated,
recombined, and reproduced as components of premises that
test subsequent generations of patterns for increasingly better
match, as determined by the number of genes selected and the
FDR of the pattern (Fig. 2). The parameters that define such
patterns can then be used as templates for pattern-based anal-
yses, and the gene expression profiles as selected can be used
individually or collectively as probands. The GA capability of
GABRIEL automatically can also explore hypothesis space in a
data-driven manner, identifying patterns that previously may not
have been hypothesized to exist.

GABRIEL uses structural knowledge, procedural knowledge,
and support knowledge synergistically. Structural knowledge
[domain knowledge (35); ontologies (17, 36)], which is contained
in the premises and conclusions of rules, defines relationships
and concepts such as gene function, experimental conditions,
and chromosomal position [for example, that c-fos is an imme-
diate�early (I�E) response gene]. Procedural knowledge (prob-
lem-solving methods, strategic knowledge) defines preferred
methods and abstract algorithms for achieving solutions to
stereotypical tasks (for example, identifying genes whose corre-
lation coefficient for expression with a particular proband gene
is greater than a user-defined threshold). Support knowledge
defines the rationale for heuristic and other relationships, indi-
cating, for example, that the expression profile of a target gene
corresponds to the profile of a regulator gene except for a time
delay and helps users to understand why and when to use a
specific analytical approach. Support knowledge is incorporated

Fig. 1. Flow chart and outline of GABRIEL architecture. The principal GABRIEL

subsystems described in the text are indicated. The consultation module
accesses the rule base, which contains both domain knowledge and proce-
dural knowledge, and applies this knowledge to the analysis of data. Core
rules included in the rule base have been created by the authors using
biological and statistical knowledge; the latter type of knowledge is incorpo-
rated into data-quality rules that evaluate the reliability of results and assist
users in choosing appropriate parameter settings. The explanation module
can indicate to a user which premises of rules were or were not satisfied by a
particular gene expression profile (see text). Users can also enter new rules or
modify existing ones by using graphical or textual interfaces of the rule
acquisition module, and these rules can be stored in the rule base for future
analyses. Additionally, the machine learning module of GABRIEL, which in-
cludes the GA pattern-search algorithm and a continuity�gap algorithm, can
learn rules directly from the dataset and save them in the rule base.
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in the form of axiomatic premises, which may be explainable only
in terms of the knowledge itself rather than by the chaining of
a premise to the conclusion(s) of other rules. It is not a
component of rules but may be needed to understand them.

GABRIEL can accept files containing microarray data and�or
files containing other information such as gene lists and anno-
tations. Additional information about GABRIEL is available at
http:��gabriel.stanford.edu.

cDNA Microarray Analysis by GABRIEL. We used GABRIEL to analyze
a dataset containing 517 genes that showed altered transcription
in human foreskin fibroblasts after the addition of serum to
growth-arrested cultures; this dataset, which was published by

Iyer et al. (18), was downloaded from http:��genome-
www.stanford.edu�serum�. Our goals were to assess GABRIEL’s
ability to interpret these microarray data and to identify simi-
larities and differences between GABRIEL’s conclusions and those
previously reported (18). The rules GABRIEL learned for this
analysis were determined by us based on known information
about the effects of serum addition on the biology of human
fibroblasts (37–40), and the premises and conclusions were
independent of the Iyer et al. results. We also wanted to
investigate the applicability of other GABRIEL features, such as its
continuity�gap algorithms, GAs, and data-quality rules for
analysis of the dataset.

In this analysis, GABRIEL focused on identifying genes whose
expression responds promptly to the addition of serum to
growth-arrested cells. Specifically, a GABRIEL event-response
pattern-based rule was used to find genes whose transcription in
the Iyer et al. dataset was progressively elevated immediately
and�or early after serum addition and then either returned to
the baseline or remained high during multiple subsequent sam-
plings. Application of this rule requires the setting of parameters
that define terms such as elevated, baseline, immediately, re-
mained, and short period, which were not explicitly defined in
the Iyer et al. analysis. We designated 15 min to 1 h after serum
addition as the I�E period. We considered elevation to require
at least a 2-fold change (as 1 after transformed into base 2
logarithm) in gene expression at each of the time points, and
baseline as a zone between the boundaries of �1 and �1 (log
value). GABRIEL was informed of these choices through a graph-
ical interface (Fig 3A), and using a rule-translation function,
converted the I�E pattern specified in the graph into text
format:

IF the gene expression level
at 15 min is higher than �1.0
AND at 30 min is higher than 0.0
AND at 1 h is higher than 1.0
AND at 2 h is higher than 0.0
AND at 4 h is higher than �1.0 and lower than 2.0
AND at 6 h is higher than �1.0 and lower than 1.0
AND at 8 h is higher than �1.0 and lower than 1.0
AND at 12 h is higher than �1.0 and lower than 1.0
AND at 16 h is higher than �1.0 and lower than 1.0
AND at 20 h is higher than �1.0 and lower than 1.0
AND at 24 h is higher than �1.0 and lower than 1.0
THEN conclude that this gene demonstrates the expression

characteristics of an I�E response gene.
Application of this rule to the Iyer et al. (18) dataset selected

10 genes whose expression profiles conformed to the indicated
pattern (Fig. 3B). Six of these were in common with Iyer et al.’s
cluster E, which the authors identified by inspection of a
dendrogram generated by hierarchical clustering (41). Among
the four genes that fulfilled the specified GABRIEL criteria but
were not present in cluster E, three (those encoding junB, CPBP,
and ribosomal protein S5) had been assigned by Iyer et al. to a
cluster (cluster J), whose elevated expression after serum addi-
tion continued for a more-extended period; one, whose expres-
sion rose during I�E and decreased below the baseline after 6 h,
had been assigned to cluster C.

Expressed sequence tag 381836, which Iyer et al. had included
in cluster E, was not selected by GABRIEL’s I�E rule. We applied
the rule explanation function to learn why and were advised that
the expression level for this gene at the 6-h and 12-h time points
did not exceed the minimum threshold (�1) we had specified for
basal level (see Table 1). Lowering the minimum threshold for
basal level from �1.0 to �1.2 produced a grouping that included
expressed sequence tag 381836, but also contained two other
genes not present in cluster E (dihydropyrimidinase-related
protein 3 and Gem GTPase), suggesting that the unnamed
parameters used by Iyer et al. to define cluster E differ from the

Fig. 2. Flow chart representation of pattern searching by GABRIEL’s GA. The
examples show profiles of gene expression relative to a specified threshold
level over a time course. The dotted areas indicate expression �0 and the
crosshatched areas indicate expression �0. The rule generates a set of random
profiles and identifies those that correspond to actual profiles in the dataset.
The criteria for determining whether a profile will survive are its ability to
select a greater number of genes that fit and to concurrently yield an FDR rate
below the threshold specified by the user. Profiles satisfying these criteria are
retained, and the others are discarded. In the following cycles, surviving
profiles undergo random mutation and crossover to generate descendants.
Each descendant profile is compared with its parent and the one selecting a
larger number of genes having an acceptable FDR. Once a pattern of profiles
is stable, i.e., no descendant profile is found that matches the data better than
the parental profile, this pattern lineage stops evolving and is stored. Addi-
tional randomly generated profiles are searched for additional fits with the
data, and the process is repeated. The GA pattern search algorithm terminates
its analysis when no new matching patterns can be found in the dataset.
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indicated GABRIEL I�E rule parameters by more than simply the
baseline threshold.

As noted above, GABRIEL calculates the FDR by random
occurrence by randomly shuffling the expression levels observed
at different times. This procedure statistically evaluates the
possibility that an expression profile was assigned spuriously to

the I�E group by the pattern-based rule (Fig. 3B; FDR � 0.3 in
this instance). Further analysis indicated that one of the 10 genes
selected by the I�E rule (i.e., the gene encoding ribosomal
protein S5) did not pass signal-to-noise ratio scrutiny (Table 2).
The reason was provided by GABRIEL’s rule explanation func-
tion: although the ratio of two channels for S5 gene expression
satisfied the I�E thresholds we specified, the absolute value of
the change in expression was not statistically significant. Appli-
cation of the signal-to-noise ratio algorithm to the I�E rule
output decreased the FDR from 0.3 to 0.07, providing statistical
evidence of the utility of the signal-to-noise ratio algorithm in
maintaining data quality. Other statistical capabilities of GAB-
RIEL enable the program to infer expression profiles when a data
point is absent or grossly aberrant (data not shown).

Proband-Based Analysis by GABRIEL. The c-fos gene, whose pattern of
expression after serum addition is characteristic of the I�E
response (38), was chosen as proband and used to identify
similarly regulated genes in the Iyer et al. dataset. The analysis
used a Pearson correlation coefficient formula modified from a
‘‘mean center’’ to ‘‘zero center’’ algorithm and a correlation
coefficient of �0.8 over 11 time points. All seven genes selected
were members of the group identified by the pattern-based I�E
rule displayed in Fig 3A; the expression patterns and correlation
coefficients relative to c-fos are shown in Fig. 3C. Expression of
junB, which also was present in the I�E grouping, is known to
respond immediately to serum addition (40). However, junB
gene expression remains elevated for a longer period than c-fos
(39, 40), and when junB was the designated proband, a set of 21
expression profiles that overlapped only partially with the junB
grouping was selected (compare Fig. 3C with Fig. 7). The
nonoverlapping profiles define a separate subcategory of genes
induced by serum addition. GABRIEL explained that serum-
induced expression of these genes was prolonged at too high a
level to conform to the conditions specified for either the I�E
rule or c-fos-proband-based selection (Table 3).

Pattern Search Analysis by GABRIEL. A central goal of most microar-
ray analyses is to detect patterns (i.e., systems in which data are
discernibly organized according to the interrelationship of com-
ponent parts) among gene expression profiles (i.e., sets of data
that portray the features of gene expression under specified
conditions). When parameters that define a pattern are not
specified and no known proband provides a model for the
pattern, GABRIEL can use its continuity�gap algorithm and GAs
to create gene groupings. We applied the continuity�gap algo-
rithm (Fig. 6) to analyze the expression profiles of 517 genes that
Iyer et al. had grouped by hierarchical clustering. We required
dendrogram continuities of at least four genes coregulated with
a correlation coefficient of �0.5 and designated an acceptable
dendrogram gap not exceeding one gene. Among 19 continuities
that GABRIEL identified by using these parameters, five corre-
sponded closely to clusters E, F, G, I, and J of Iyer et al. (shown
for clusters E and J in Fig 4A). Iyer et al. clusters that included
more than 30 genes (e.g., clusters A, B, C, D, and H) contained
2–4 GABRIEL-selected continuities whose beginning and end
aligned well with Iyer et al. cluster boundaries, and most
continuities found by GABRIEL corresponded precisely to den-
drogram subclusters. However, when chained to the continuity-
proband rule, GABRIEL detected additional continuities not
found by Iyer et al.’s analysis of hierarchical clustering dendro-
grams (Fig. 8).

GABRIEL’s GA (Fig. 2) can select gene expression patterns in
populations of profiles that have not been preordered. GA
analysis of the Iyer et al. dataset through multiple generations of
pattern evolution discovered 10 patterns that showed a FDR rate
lower than 0.3. Among these were a pattern having parameters
nearly identical to those we specified in our search for I�E genes

Fig. 3. GABRIEL analyses. (A) Graphical interface showing parameters selected
by user for the I�E event response rule. Sampling times during the experiment
are designated by using entry boxes and are represented on the x axis. The y
axis represents the gene expression level after the base-2 logarithm transfor-
mation. Entry boxes allow users to define maximum and minimum thresholds
for zones (green region) of expression at each time point; in indicates infinity.
Zones defined in this interface are translated by GABRIEL into a textual repre-
sentation of the rule. Activation of the search identifies gene expression
profiles that satisfy the specified parameters. In this example, the user wants
to find genes whose expression is defined to increase gradually from 0.25 h to
1 h after serum addition, reach a peak at 2 h, decrease to the baseline by 6 h,
and remain there throughout the duration of the experiment. The black line
within the green zone is the profile of an expressed sequence tag (AA016305)
selected by this rule but not included in the I�E response gene cluster (cluster
E) of Iyer et al. (18). The red line (expressed sequence tag SID381836), which
was included in cluster E, falls outside the defined parameters (green zone) at
the one- and two-time points and was not selected by this GABRIEL rule. (B)
Genes identified by the rule defined by parameters shown in A. The display
style follows that of Eisen et al. (41): log ratios of 0 (unchanged) are shown as
black, positive ratios (up-regulation) are represented by red, and negative
ratios (down-regulation) are represented by green. The intensity is increased
to correspond to the experimentally determined ratios. Genes common to the
I�E response cluster E in figure 2 of Iyer et al. (18) are designated by *. The FDR
was calculated by random permutation rule by randomly shuffling the ex-
pression level at different time points more than 100 times and used to
estimate the statistical probability (0.3 in this case) of spurious assignment of
a profile to a defined pattern. (C) Genes identified by a c-fos proband-based
rule. The c-fos gene was designated as proband, and 0.8 correlation coeffi-
cient over 11 time points was the specified threshold. Genes were sorted
according to their correlation coefficient (the first numbers on each row) with
c-fos. Including c-fos, five of the genes selected by GABRIEL (designated by *)
were in cluster E, a seven-gene c-fos-containing hierarchical cluster chosen by
Iyer et al.
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(Fig. 4A), and a pattern that showed serum-induced expression
that remained elevated for an extended period (Fig. 4B). The
ability of the GABRIEL GA to examine a dataset fully and without
bias also produced gene groupings that were not detected by
either Iyer et al.’s analysis or by our continuity�gap analysis of
the Iyer et al. dendrograms (Fig. 9A). Interestingly, we found that
the GA was capable of distinguishing between expression pro-
files having subtle differences not readily apparent by visual
scanning of data (Fig. 9B).

Discussion
GABRIEL was designed to apply knowledge consistently and
systematically to the analysis of microarray data. The knowledge
it contains can select gene expression profiles that satisfy spec-
ified criteria, create novel populations of patterns and identify
those that fit the dataset, and generate gene groupings from
profiles preordered by nonsupervised learning algorithms. The
formatting of GABRIEL knowledge in rules enables the program
to readily indicate the basis for its decisions and also facilitates
the acquisition of new knowledge from users. Rules that evaluate
the quality of the data being analyzed can be chained to
pattern-based or proband-based rules to extend the scope of
GABRIEL conclusions.

Here we have illustrated certain GABRIEL features by analyzing
a previously published microarray dataset. Although our goal
was not to determine specifically whether GABRIEL could repro-
duce the conclusions reached during the Iyer et al. team’s post
hoc analysis of hierarchical clusters of gene expression profiles,
we nevertheless found considerable overlap between GABRIEL’s
findings and those of Iyer et al. In instances where the results
differed, the GABRIEL rule explanation function indicated the

statistical or threshold parameters responsible for the differ-
ences. We also found that application of GABRIEL’s pattern-
based and proband-based rules identified novel and previously
undetected gene expression relationships in the Iyer et al. dataset
and that the GABRIEL GA discovered patterns not found in the
Iyer et al. analysis or anticipated by us.

Used in conjunction with the FDR rule to estimate the
incidence of falsely discovered continuities, GABRIEL’s continu-
ity�gap algorithm has proved to be a robust and useful method
for learning probands when they have not been defined by the
user, and also for assessing the effects of time-independent
variables such as chromosomal position (26). Potentially, the
domain ontology of GABRIEL and its data-quality rules will also
enable the elucidation of multivariate relationships among sam-
ples having similar or disparate properties.

Correlation coefficient has been used in algorithms used
previously for microarray analysis, including hierarchical clus-
tering and nearest-neighbor approaches (42). However, its mode
of use in GABRIEL’s proband-based rules enables both positive
and negative correlations and also correlations that show a time
delay or advance—concepts that are not easily represented by a
hierarchical tree. Additionally, the architecture of GABRIEL
facilitates integration of the correlation coefficient with other
rules and its inclusion as a component of composite rules.
Similarly, it facilitates the combination of statistical approaches
such as bootstrapping (23, 43) and ANOVA (19) with gene
search rules for assessment of data reliability.

GABRIEL differs from other systems that use machine knowl-
edge in a supervised manner to analyze DNA microarray data
[e.g., support vector machines (4, 5), rough set (6), SPLASH (7),
and probabilistic relational models (8)] in providing a rule-

Fig. 4. Application of the continuity�gap and GA rules. (A) Continuities identified by continuity�gap algorithm. (Upper) Shown is a continuity that includes
seven genes that had been assigned to cluster E by Iyer et al. (Lower) All components of the continuity, which contains junB, were included in cluster J by Iyer
et al. Additional profiles in cluster J were not selected by this GABRIEL rule because they did not have a correlation coefficient higher than the threshold specified
for the continuity. (B) Examples of patterns identified by GA-based pattern search rule (Fig. 2). In this application of GA pattern search rule, each pattern was
required to include at least three genes and have a FDR of less than 0.2. Patterns 1 and 2 were generated randomly and found by GABRIEL to fit closely with
expression profiles in the dataset. Pattern 1 corresponds to the I�E grouping defined by the parameters shown in Fig. 3A (i.e., serum-induced expression not
sustained for an extended period). Pattern 2 corresponds to an I�E response with sustained high expression level. Age represents the number of generations
that GA algorithm used to evolve the patterns. The ages of patterns 1 and 2 are 31. The FDR was estimated from the random permutation rule; in indicates infinity.
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based platform that synergistically integrates domain ontolo-
gies with methods of statistical analysis and problem solving.
Although the GABRIEL platform has been applied here only to
microarray analysis, our results suggest that its key features
(e.g., explicitness of the reasoning process, uniform applica-
tion of knowledge, ability to systematically explore a dataset
using criteria of different stringency, and ability to combine
different types of knowledge) may also be useful for analysis

of large datasets generated by other types of genomic and
proteomic approaches.
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