Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 May 15;372(Pt 1):105–112. doi: 10.1042/BJ20021652

Rho family GTPase Rnd2 interacts and co-localizes with MgcRacGAP in male germ cells.

Nathalie Naud 1, Aminata Touré 1, Jianfeng Liu 1, Charles Pineau 1, Laurence Morin 1, Olivier Dorseuil 1, Denise Escalier 1, Pierre Chardin 1, Gérard Gacon 1
PMCID: PMC1223378  PMID: 12590651

Abstract

The male-germ-cell Rac GTPase-activating protein gene (MgcRacGAP) was initially described as a human RhoGAP gene highly expressed in male germ cells at spermatocyte stage, but exhibits significant levels of expression in most cell types. In somatic cells, MgcRacGAP protein was found to both concentrate in the midzone/midbody and be required for cytokinesis. As a RhoGAP, MgcRacGAP has been proposed to down-regulate RhoA, which is localized to the cleavage furrow and midbody during cytokinesis. Due to embryonic lethality in MgcRacGAP -null mutant mice and to the lack of an in vitro model of spermatogenesis, nothing is known regarding the role and mode of action of MgcRacGAP in male germ cells. We have analysed the expression, subcellular localization and molecular interactions of MgcRacGAP in male germ cells. Whereas MgcRacGAP was found only in spermatocytes and early spermatids, the widespread RhoGTPases RhoA, Rac1 and Cdc42 (which are, to various extents, in vitro substrates for MgcRacGAP activity) were, surprisingly, not detected at these stages. In contrast, Rnd2, a Rho family GTPase-deficient G-protein was found to be co-expressed with MgcRacGAP in spermatocytes and spermatids. MgcRacGAP was detected in the midzone of meiotic cells, but also, unexpectedly, in the Golgi-derived pro-acrosomal vesicle, co-localizing with Rnd2. In addition, a stable Rnd2-MgcRacGAP molecular complex could be evidenced by glutathione S-transferase pull-down and co-immunoprecipitation experiments. We conclude that Rnd2 is a probable physiological partner of MgcRacGAP in male germ cells and we propose that MgcRacGAP, and, quite possibly, other RhoGAPs, may participate in signalling pathways involving Rnd family proteins.

Full Text

The Full Text of this article is available as a PDF (324.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agnel M., Röder L., Vola C., Griffin-Shea R. A Drosophila rotund transcript expressed during spermatogenesis and imaginal disc morphogenesis encodes a protein which is similar to human Rac GTPase-activating (racGAP) proteins. Mol Cell Biol. 1992 Nov;12(11):5111–5122. doi: 10.1128/mcb.12.11.5111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Arar C., Ott M. O., Touré A., Gacon G. Structure and expression of murine mgcRacGAP: its developmental regulation suggests a role for the Rac/MgcRacGAP signalling pathway in neurogenesis. Biochem J. 1999 Oct 1;343(Pt 1):225–230. [PMC free article] [PubMed] [Google Scholar]
  3. Bergeret E., Pignot-Paintrand I., Guichard A., Raymond K., Fauvarque M. O., Cazemajor M., Griffin-Shea R. RotundRacGAP functions with Ras during spermatogenesis and retinal differentiation in Drosophila melanogaster. Mol Cell Biol. 2001 Sep;21(18):6280–6291. doi: 10.1128/MCB.21.18.6280-6291.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chardin P. Rnd proteins: a new family of Rho-related proteins that interfere with the assembly of filamentous actin structures and cell adhesion. Prog Mol Subcell Biol. 1999;22:39–50. doi: 10.1007/978-3-642-58591-3_3. [DOI] [PubMed] [Google Scholar]
  5. Farkas Rebecca M., Giansanti Maria Grazia, Gatti Maurizio, Fuller Margaret T. The Drosophila Cog5 homologue is required for cytokinesis, cell elongation, and assembly of specialized Golgi architecture during spermatogenesis. Mol Biol Cell. 2003 Jan;14(1):190–200. doi: 10.1091/mbc.E02-06-0343. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Foster R., Hu K. Q., Lu Y., Nolan K. M., Thissen J., Settleman J. Identification of a novel human Rho protein with unusual properties: GTPase deficiency and in vivo farnesylation. Mol Cell Biol. 1996 Jun;16(6):2689–2699. doi: 10.1128/mcb.16.6.2689. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Giansanti M. G., Bonaccorsi S., Bucciarelli E., Gatti M. Drosophila male meiosis as a model system for the study of cytokinesis in animal cells. Cell Struct Funct. 2001 Dec;26(6):609–617. doi: 10.1247/csf.26.609. [DOI] [PubMed] [Google Scholar]
  8. Glotzer M. Animal cell cytokinesis. Annu Rev Cell Dev Biol. 2001;17:351–386. doi: 10.1146/annurev.cellbio.17.1.351. [DOI] [PubMed] [Google Scholar]
  9. Goud B., Zahraoui A., Tavitian A., Saraste J. Small GTP-binding protein associated with Golgi cisternae. Nature. 1990 Jun 7;345(6275):553–556. doi: 10.1038/345553a0. [DOI] [PubMed] [Google Scholar]
  10. Guasch R. M., Scambler P., Jones G. E., Ridley A. J. RhoE regulates actin cytoskeleton organization and cell migration. Mol Cell Biol. 1998 Aug;18(8):4761–4771. doi: 10.1128/mcb.18.8.4761. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Guertin David A., Trautmann Susanne, McCollum Dannel. Cytokinesis in eukaryotes. Microbiol Mol Biol Rev. 2002 Jun;66(2):155–178. doi: 10.1128/MMBR.66.2.155-178.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hall A. Rho GTPases and the actin cytoskeleton. Science. 1998 Jan 23;279(5350):509–514. doi: 10.1126/science.279.5350.509. [DOI] [PubMed] [Google Scholar]
  13. Hirose K., Kawashima T., Iwamoto I., Nosaka T., Kitamura T. MgcRacGAP is involved in cytokinesis through associating with mitotic spindle and midbody. J Biol Chem. 2000 Nov 20;276(8):5821–5828. doi: 10.1074/jbc.M007252200. [DOI] [PubMed] [Google Scholar]
  14. Jantsch-Plunger V., Gönczy P., Romano A., Schnabel H., Hamill D., Schnabel R., Hyman A. A., Glotzer M. CYK-4: A Rho family gtpase activating protein (GAP) required for central spindle formation and cytokinesis. J Cell Biol. 2000 Jun 26;149(7):1391–1404. doi: 10.1083/jcb.149.7.1391. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Katoh Hironori, Harada Amane, Mori Kazutoshi, Negishi Manabu. Socius is a novel Rnd GTPase-interacting protein involved in disassembly of actin stress fibers. Mol Cell Biol. 2002 May;22(9):2952–2964. doi: 10.1128/MCB.22.9.2952-2964.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kawashima T., Hirose K., Satoh T., Kaneko A., Ikeda Y., Kaziro Y., Nosaka T., Kitamura T. MgcRacGAP is involved in the control of growth and differentiation of hematopoietic cells. Blood. 2000 Sep 15;96(6):2116–2124. [PubMed] [Google Scholar]
  17. Kitamura T., Kawashima T., Minoshima Y., Tonozuka Y., Hirose K., Nosaka T. Role of MgcRacGAP/Cyk4 as a regulator of the small GTPase Rho family in cytokinesis and cell differentiation. Cell Struct Funct. 2001 Dec;26(6):645–651. doi: 10.1247/csf.26.645. [DOI] [PubMed] [Google Scholar]
  18. Lemmon S. K., Traub L. M. Sorting in the endosomal system in yeast and animal cells. Curr Opin Cell Biol. 2000 Aug;12(4):457–466. doi: 10.1016/s0955-0674(00)00117-4. [DOI] [PubMed] [Google Scholar]
  19. Leung T., How B. E., Manser E., Lim L. Germ cell beta-chimaerin, a new GTPase-activating protein for p21rac, is specifically expressed during the acrosomal assembly stage in rat testis. J Biol Chem. 1993 Feb 25;268(6):3813–3816. [PubMed] [Google Scholar]
  20. Li Xiaoyu, Bu Xia, Lu Binfeng, Avraham Hava, Flavell Richard A., Lim Bing. The hematopoiesis-specific GTP-binding protein RhoH is GTPase deficient and modulates activities of other Rho GTPases by an inhibitory function. Mol Cell Biol. 2002 Feb;22(4):1158–1171. doi: 10.1128/MCB.22.4.1158-1171.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Manandhar G., Moreno R. D., Simerly C., Toshimori K., Schatten G. Contractile apparatus of the normal and abortive cytokinetic cells during mouse male meiosis. J Cell Sci. 2000 Dec;113(Pt 23):4275–4286. doi: 10.1242/jcs.113.23.4275. [DOI] [PubMed] [Google Scholar]
  22. Mishima Masanori, Kaitna Susanne, Glotzer Michael. Central spindle assembly and cytokinesis require a kinesin-like protein/RhoGAP complex with microtubule bundling activity. Dev Cell. 2002 Jan;2(1):41–54. doi: 10.1016/s1534-5807(01)00110-1. [DOI] [PubMed] [Google Scholar]
  23. Moreno R. D., Ramalho-Santos J., Sutovsky P., Chan E. K., Schatten G. Vesicular traffic and golgi apparatus dynamics during mammalian spermatogenesis: implications for acrosome architecture. Biol Reprod. 2000 Jul;63(1):89–98. doi: 10.1095/biolreprod63.1.89. [DOI] [PubMed] [Google Scholar]
  24. Moreno R. D., Schatten G. Microtubule configurations and post-translational alpha-tubulin modifications during mammalian spermatogenesis. Cell Motil Cytoskeleton. 2000 Aug;46(4):235–246. doi: 10.1002/1097-0169(200008)46:4<235::AID-CM1>3.0.CO;2-G. [DOI] [PubMed] [Google Scholar]
  25. Nobes C. D., Lauritzen I., Mattei M. G., Paris S., Hall A., Chardin P. A new member of the Rho family, Rnd1, promotes disassembly of actin filament structures and loss of cell adhesion. J Cell Biol. 1998 Apr 6;141(1):187–197. doi: 10.1083/jcb.141.1.187. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Prakash S. K., Paylor R., Jenna S., Lamarche-Vane N., Armstrong D. L., Xu B., Mancini M. A., Zoghbi H. Y. Functional analysis of ARHGAP6, a novel GTPase-activating protein for RhoA. Hum Mol Genet. 2000 Mar 1;9(4):477–488. doi: 10.1093/hmg/9.4.477. [DOI] [PubMed] [Google Scholar]
  27. Schmidt Anja, Hall Alan. Guanine nucleotide exchange factors for Rho GTPases: turning on the switch. Genes Dev. 2002 Jul 1;16(13):1587–1609. doi: 10.1101/gad.1003302. [DOI] [PubMed] [Google Scholar]
  28. Settleman J. Rac 'n Rho: the music that shapes a developing embryo. Dev Cell. 2001 Sep;1(3):321–331. doi: 10.1016/s1534-5807(01)00053-3. [DOI] [PubMed] [Google Scholar]
  29. Tanaka Hiroko, Fujita Hirotada, Katoh Hironori, Mori Kazutoshi, Negishi Manabu. Vps4-A (vacuolar protein sorting 4-A) is a binding partner for a novel Rho family GTPase, Rnd2. Biochem J. 2002 Jul 15;365(Pt 2):349–353. doi: 10.1042/BJ20020062. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Tang X. M., Lalli M. F., Clermont Y. A cytochemical study of the Golgi apparatus of the spermatid during spermiogenesis in the rat. Am J Anat. 1982 Apr;163(4):283–294. doi: 10.1002/aja.1001630402. [DOI] [PubMed] [Google Scholar]
  31. Toomre D., Keller P., White J., Olivo J. C., Simons K. Dual-color visualization of trans-Golgi network to plasma membrane traffic along microtubules in living cells. J Cell Sci. 1999 Jan;112(Pt 1):21–33. doi: 10.1242/jcs.112.1.21. [DOI] [PubMed] [Google Scholar]
  32. Toure A., Morin L., Pineau C., Becq F., Dorseuil O., Gacon G. Tat1, a novel sulfate transporter specifically expressed in human male germ cells and potentially linked to rhogtpase signaling. J Biol Chem. 2001 Mar 5;276(23):20309–20315. doi: 10.1074/jbc.M011740200. [DOI] [PubMed] [Google Scholar]
  33. Touré A., Dorseuil O., Morin L., Timmons P., Jégou B., Reibel L., Gacon G. MgcRacGAP, a new human GTPase-activating protein for Rac and Cdc42 similar to Drosophila rotundRacGAP gene product, is expressed in male germ cells. J Biol Chem. 1998 Mar 13;273(11):6019–6023. doi: 10.1074/jbc.273.11.6019. [DOI] [PubMed] [Google Scholar]
  34. Van Aelst L., D'Souza-Schorey C. Rho GTPases and signaling networks. Genes Dev. 1997 Sep 15;11(18):2295–2322. doi: 10.1101/gad.11.18.2295. [DOI] [PubMed] [Google Scholar]
  35. Van de Putte T., Zwijsen A., Lonnoy O., Rybin V., Cozijnsen M., Francis A., Baekelandt V., Kozak C. A., Zerial M., Huylebroeck D. Mice with a homozygous gene trap vector insertion in mgcRacGAP die during pre-implantation development. Mech Dev. 2001 Apr;102(1-2):33–44. doi: 10.1016/s0925-4773(01)00279-9. [DOI] [PubMed] [Google Scholar]
  36. Ventelä S., Mulari M., Okabe M., Tanaka H., Nishimune Y., Toppari J., Parvinen M. Regulation of acrosome formation in mice expressing green fluorescent protein as a marker. Tissue Cell. 2000 Dec;32(6):501–507. doi: 10.1016/s0040-8166(00)80006-3. [DOI] [PubMed] [Google Scholar]
  37. Weber J. E., Russell L. D. A study of intercellular bridges during spermatogenesis in the rat. Am J Anat. 1987 Sep;180(1):1–24. doi: 10.1002/aja.1001800102. [DOI] [PubMed] [Google Scholar]
  38. Wooltorton E. J., Haliotis T., Mueller C. R. Identification and characterization of a transcript for a novel Rac GTPase-activating protein in terminally differentiating 3T3-L1 adipocytes. DNA Cell Biol. 1999 Apr;18(4):265–273. doi: 10.1089/104454999315321. [DOI] [PubMed] [Google Scholar]
  39. Zalcman G., Dorseuil O., Garcia-Ranea J. A., Gacon G., Camonis J. RhoGAPs and RhoGDIs, (His)stories of two families. Prog Mol Subcell Biol. 1999;22:85–113. doi: 10.1007/978-3-642-58591-3_5. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES