Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 Jun 15;372(Pt 3):747–755. doi: 10.1042/BJ20021868

Plasminogen activator inhibitor-1 polymers, induced by inactivating amphipathic organochemical ligands.

Katrine E Pedersen 1, Anja P Einholm 1, Anni Christensen 1, Lotte Schack 1, Troels Wind 1, John M Kenney 1, Peter A Andreasen 1
PMCID: PMC1223451  PMID: 12656676

Abstract

Negatively charged organochemical inactivators of the anti-proteolytic activity of plasminogen activator inhibitor-1 (PAI-1) convert it to inactive polymers. As investigated by native gel electrophoresis, the size of the PAI-1 polymers ranged from dimers to multimers of more than 20 units. As compared with native PAI-1, the polymers exhibited an increased resistance to temperature-induced unfolding. Polymerization was associated with specific changes in patterns of digestion with non-target proteases. During incubation with urokinase-type plasminogen activator, the polymers were slowly converted to reactive centre-cleaved monomers, indicating substrate behaviour of the terminal PAI-1 molecules in the polymers. A quadruple mutant of PAI-1 with a retarded rate of latency transition also had a retarded rate of polymerization. Studying a number of serpins by native gel electrophoresis, ligand-induced polymerization was observed only with PAI-1 and heparin cofactor II, which were also able to copolymerize. On the basis of these results, we suggest that the binding of ligands in a specific region of PAI-1 leads to so-called loop-sheet polymerization, in which the reactive centre loop of one molecule binds to beta-sheet A in another molecule. Induction of serpin polymerization by small organochemical ligands is a novel finding and is of protein chemical interest in relation to pathological protein polymerization in general.

Full Text

The Full Text of this article is available as a PDF (277.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andreasen P. A., Pyke C., Riccio A., Kristensen P., Nielsen L. S., Lund L. R., Blasi F., Danø K. Plasminogen activator inhibitor type 1 biosynthesis and mRNA level are increased by dexamethasone in human fibrosarcoma cells. Mol Cell Biol. 1987 Aug;7(8):3021–3025. doi: 10.1128/mcb.7.8.3021. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Andreasen P. A., Riccio A., Welinder K. G., Douglas R., Sartorio R., Nielsen L. S., Oppenheimer C., Blasi F., Danø K. Plasminogen activator inhibitor type-1: reactive center and amino-terminal heterogeneity determined by protein and cDNA sequencing. FEBS Lett. 1986 Dec 15;209(2):213–218. doi: 10.1016/0014-5793(86)81113-9. [DOI] [PubMed] [Google Scholar]
  3. Baglin Trevor P., Carrell Robin W., Church Frank C., Esmon Charles T., Huntington James A. Crystal structures of native and thrombin-complexed heparin cofactor II reveal a multistep allosteric mechanism. Proc Natl Acad Sci U S A. 2002 Aug 8;99(17):11079–11084. doi: 10.1073/pnas.162232399. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Berkenpas M. B., Lawrence D. A., Ginsburg D. Molecular evolution of plasminogen activator inhibitor-1 functional stability. EMBO J. 1995 Jul 3;14(13):2969–2977. doi: 10.1002/j.1460-2075.1995.tb07299.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Björquist P., Ehnebom J., Inghardt T., Hansson L., Lindberg M., Linschoten M., Strömqvist M., Deinum J. Identification of the binding site for a low-molecular-weight inhibitor of plasminogen activator inhibitor type 1 by site-directed mutagenesis. Biochemistry. 1998 Feb 3;37(5):1227–1234. doi: 10.1021/bi971554q. [DOI] [PubMed] [Google Scholar]
  6. Booth N. A., Simpson A. J., Croll A., Bennett B., MacGregor I. R. Plasminogen activator inhibitor (PAI-1) in plasma and platelets. Br J Haematol. 1988 Nov;70(3):327–333. doi: 10.1111/j.1365-2141.1988.tb02490.x. [DOI] [PubMed] [Google Scholar]
  7. Carrell R. W., Owen M. C. Plakalbumin, alpha 1-antitrypsin, antithrombin and the mechanism of inflammatory thrombosis. Nature. 1985 Oct 24;317(6039):730–732. doi: 10.1038/317730a0. [DOI] [PubMed] [Google Scholar]
  8. Carrell R. W., Stein P. E., Fermi G., Wardell M. R. Biological implications of a 3 A structure of dimeric antithrombin. Structure. 1994 Apr 15;2(4):257–270. doi: 10.1016/s0969-2126(00)00028-9. [DOI] [PubMed] [Google Scholar]
  9. Dumery L., Bourdel F., Soussan Y., Fialkowsky A., Viale S., Nicolas P., Reboud-Ravaux M. beta-Amyloid protein aggregation: its implication in the physiopathology of Alzheimer's disease. Pathol Biol (Paris) 2001 Feb;49(1):72–85. doi: 10.1016/s0369-8114(00)00009-2. [DOI] [PubMed] [Google Scholar]
  10. Dunstone M. A., Dai W., Whisstock J. C., Rossjohn J., Pike R. N., Feil S. C., Le Bonniec B. F., Parker M. W., Bottomley S. P. Cleaved antitrypsin polymers at atomic resolution. Protein Sci. 2000 Feb;9(2):417–420. doi: 10.1110/ps.9.2.417. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Egelund R., Einholm A. P., Pedersen K. E., Nielsen R. W., Christensen A., Deinum J., Andreasen P. A. A regulatory hydrophobic area in the flexible joint region of plasminogen activator inhibitor-1, defined with fluorescent activity-neutralizing ligands. Ligand-induced serpin polymerization. J Biol Chem. 2001 Jan 25;276(16):13077–13086. doi: 10.1074/jbc.M009024200. [DOI] [PubMed] [Google Scholar]
  12. Egelund R., Petersen T. E., Andreasen P. A. A serpin-induced extensive proteolytic susceptibility of urokinase-type plasminogen activator implicates distortion of the proteinase substrate-binding pocket and oxyanion hole in the serpin inhibitory mechanism. Eur J Biochem. 2001 Feb;268(3):673–685. doi: 10.1046/j.1432-1327.2001.01921.x. [DOI] [PubMed] [Google Scholar]
  13. Egelund R., Rodenburg K. W., Andreasen P. A., Rasmussen M. S., Guldberg R. E., Petersen T. E. An ester bond linking a fragment of a serine proteinase to its serpin inhibitor. Biochemistry. 1998 May 5;37(18):6375–6379. doi: 10.1021/bi973043+. [DOI] [PubMed] [Google Scholar]
  14. Egelund R., Schousboe S. L., Sottrup-Jensen L., Rodenburg K. W., Andreasen P. A. Type-1 plasminogen-activator inhibitor -- conformational differences between latent, active, reactive-centre-cleaved and plasminogen-activator-complexed forms, as probed by proteolytic susceptibility. Eur J Biochem. 1997 Sep 15;248(3):775–785. doi: 10.1111/j.1432-1033.1997.t01-1-00775.x. [DOI] [PubMed] [Google Scholar]
  15. Elliott P. R., Pei X. Y., Dafforn T. R., Lomas D. A. Topography of a 2.0 A structure of alpha1-antitrypsin reveals targets for rational drug design to prevent conformational disease. Protein Sci. 2000 Jul;9(7):1274–1281. doi: 10.1110/ps.9.7.1274. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Gils A., Declerck P. J. Structure-function relationships in serpins: current concepts and controversies. Thromb Haemost. 1998 Oct;80(4):531–541. [PubMed] [Google Scholar]
  17. Guex N., Peitsch M. C. SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis. 1997 Dec;18(15):2714–2723. doi: 10.1002/elps.1150181505. [DOI] [PubMed] [Google Scholar]
  18. Hansen M., Busse M. N., Andreasen P. A. Importance of the amino-acid composition of the shutter region of plasminogen activator inhibitor-1 for its transitions to latent and substrate forms. Eur J Biochem. 2001 Dec;268(23):6274–6283. doi: 10.1046/j.0014-2956.2001.02582.x. [DOI] [PubMed] [Google Scholar]
  19. Huber K., Christ G., Wojta J., Gulba D. Plasminogen activator inhibitor type-1 in cardiovascular disease. Status report 2001. Thromb Res. 2001 Sep 30;103 (Suppl 1):S7–19. doi: 10.1016/s0049-3848(01)00293-6. [DOI] [PubMed] [Google Scholar]
  20. Huber R., Carrell R. W. Implications of the three-dimensional structure of alpha 1-antitrypsin for structure and function of serpins. Biochemistry. 1989 Nov 14;28(23):8951–8966. doi: 10.1021/bi00449a001. [DOI] [PubMed] [Google Scholar]
  21. Huntington J. A., Pannu N. S., Hazes B., Read R. J., Lomas D. A., Carrell R. W. A 2.6 A structure of a serpin polymer and implications for conformational disease. J Mol Biol. 1999 Oct 29;293(3):449–455. doi: 10.1006/jmbi.1999.3184. [DOI] [PubMed] [Google Scholar]
  22. Huntington J. A., Read R. J., Carrell R. W. Structure of a serpin-protease complex shows inhibition by deformation. Nature. 2000 Oct 19;407(6806):923–926. doi: 10.1038/35038119. [DOI] [PubMed] [Google Scholar]
  23. Irving J. A., Pike R. N., Lesk A. M., Whisstock J. C. Phylogeny of the serpin superfamily: implications of patterns of amino acid conservation for structure and function. Genome Res. 2000 Dec;10(12):1845–1864. doi: 10.1101/gr.gr-1478r. [DOI] [PubMed] [Google Scholar]
  24. Jensen Jan K., Wind Troels, Andreasen Peter A. The vitronectin binding area of plasminogen activator inhibitor-1, mapped by mutagenesis and protection against an inactivating organochemical ligand. FEBS Lett. 2002 Jun 19;521(1-3):91–94. doi: 10.1016/s0014-5793(02)02830-2. [DOI] [PubMed] [Google Scholar]
  25. Jin L., Abrahams J. P., Skinner R., Petitou M., Pike R. N., Carrell R. W. The anticoagulant activation of antithrombin by heparin. Proc Natl Acad Sci U S A. 1997 Dec 23;94(26):14683–14688. doi: 10.1073/pnas.94.26.14683. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Kjøller L., Martensen P. M., Sottrup-Jensen L., Justesen J., Rodenburg K. W., Andreasen P. A. Conformational changes of the reactive-centre loop and beta-strand 5A accompany temperature-dependent inhibitor-substrate transition of plasminogen-activator inhibitor 1. Eur J Biochem. 1996 Oct 1;241(1):38–46. doi: 10.1111/j.1432-1033.1996.0038t.x. [DOI] [PubMed] [Google Scholar]
  27. Lawrence D. A., Ginsburg D., Day D. E., Berkenpas M. B., Verhamme I. M., Kvassman J. O., Shore J. D. Serpin-protease complexes are trapped as stable acyl-enzyme intermediates. J Biol Chem. 1995 Oct 27;270(43):25309–25312. doi: 10.1074/jbc.270.43.25309. [DOI] [PubMed] [Google Scholar]
  28. Lawrence D. A., Olson S. T., Muhammad S., Day D. E., Kvassman J. O., Ginsburg D., Shore J. D. Partitioning of serpin-proteinase reactions between stable inhibition and substrate cleavage is regulated by the rate of serpin reactive center loop insertion into beta-sheet A. J Biol Chem. 2000 Feb 25;275(8):5839–5844. doi: 10.1074/jbc.275.8.5839. [DOI] [PubMed] [Google Scholar]
  29. Lomas D. A., Evans D. L., Stone S. R., Chang W. S., Carrell R. W. Effect of the Z mutation on the physical and inhibitory properties of alpha 1-antitrypsin. Biochemistry. 1993 Jan 19;32(2):500–508. doi: 10.1021/bi00053a014. [DOI] [PubMed] [Google Scholar]
  30. Lomas David A., Carrell Robin W. Serpinopathies and the conformational dementias. Nat Rev Genet. 2002 Oct;3(10):759–768. doi: 10.1038/nrg907. [DOI] [PubMed] [Google Scholar]
  31. Lücking C. B., Brice A. Alpha-synuclein and Parkinson's disease. Cell Mol Life Sci. 2000 Dec;57(13-14):1894–1908. doi: 10.1007/PL00000671. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Mast A. E., Enghild J. J., Salvesen G. Conformation of the reactive site loop of alpha 1-proteinase inhibitor probed by limited proteolysis. Biochemistry. 1992 Mar 17;31(10):2720–2728. doi: 10.1021/bi00125a012. [DOI] [PubMed] [Google Scholar]
  33. Mikus P., Urano T., Liljeström P., Ny T. Plasminogen-activator inhibitor type 2 (PAI-2) is a spontaneously polymerising SERPIN. Biochemical characterisation of the recombinant intracellular and extracellular forms. Eur J Biochem. 1993 Dec 15;218(3):1071–1082. doi: 10.1111/j.1432-1033.1993.tb18467.x. [DOI] [PubMed] [Google Scholar]
  34. Mottonen J., Strand A., Symersky J., Sweet R. M., Danley D. E., Geoghegan K. F., Gerard R. D., Goldsmith E. J. Structural basis of latency in plasminogen activator inhibitor-1. Nature. 1992 Jan 16;355(6357):270–273. doi: 10.1038/355270a0. [DOI] [PubMed] [Google Scholar]
  35. Munch M., Heegaard C. W., Andreasen P. A. Interconversions between active, inert and substrate forms of denatured/refolded type-1 plasminogen activator inhibitor. Biochim Biophys Acta. 1993 Sep 3;1202(1):29–37. doi: 10.1016/0167-4838(93)90059-z. [DOI] [PubMed] [Google Scholar]
  36. Munch M., Heegaard C., Jensen P. H., Andreasen P. A. Type-1 inhibitor of plasminogen activators. Distinction between latent, activated and reactive centre-cleaved forms with thermal stability and monoclonal antibodies. FEBS Lett. 1991 Dec 16;295(1-3):102–106. doi: 10.1016/0014-5793(91)81395-o. [DOI] [PubMed] [Google Scholar]
  37. Nar H., Bauer M., Stassen J. M., Lang D., Gils A., Declerck P. J. Plasminogen activator inhibitor 1. Structure of the native serpin, comparison to its other conformers and implications for serpin inactivation. J Mol Biol. 2000 Mar 31;297(3):683–695. doi: 10.1006/jmbi.2000.3604. [DOI] [PubMed] [Google Scholar]
  38. Patston P. A., Hauert J., Michaud M., Schapira M. Formation and properties of C1-inhibitor polymers. FEBS Lett. 1995 Jul 24;368(3):401–404. doi: 10.1016/0014-5793(95)00694-5. [DOI] [PubMed] [Google Scholar]
  39. Preissner K. T. Self-association of antithrombin III relates to multimer formation of thrombin-antithrombin III complexes. Thromb Haemost. 1993 May 3;69(5):422–429. [PubMed] [Google Scholar]
  40. Schreuder H. A., de Boer B., Dijkema R., Mulders J., Theunissen H. J., Grootenhuis P. D., Hol W. G. The intact and cleaved human antithrombin III complex as a model for serpin-proteinase interactions. Nat Struct Biol. 1994 Jan;1(1):48–54. doi: 10.1038/nsb0194-48. [DOI] [PubMed] [Google Scholar]
  41. Schägger H., von Jagow G. Blue native electrophoresis for isolation of membrane protein complexes in enzymatically active form. Anal Biochem. 1991 Dec;199(2):223–231. doi: 10.1016/0003-2697(91)90094-a. [DOI] [PubMed] [Google Scholar]
  42. Sharp A. M., Stein P. E., Pannu N. S., Carrell R. W., Berkenpas M. B., Ginsburg D., Lawrence D. A., Read R. J. The active conformation of plasminogen activator inhibitor 1, a target for drugs to control fibrinolysis and cell adhesion. Structure. 1999 Feb 15;7(2):111–118. doi: 10.1016/S0969-2126(99)80018-5. [DOI] [PubMed] [Google Scholar]
  43. Shore J. D., Day D. E., Francis-Chmura A. M., Verhamme I., Kvassman J., Lawrence D. A., Ginsburg D. A fluorescent probe study of plasminogen activator inhibitor-1. Evidence for reactive center loop insertion and its role in the inhibitory mechanism. J Biol Chem. 1995 Mar 10;270(10):5395–5398. doi: 10.1074/jbc.270.10.5395. [DOI] [PubMed] [Google Scholar]
  44. Stout T. J., Graham H., Buckley D. I., Matthews D. J. Structures of active and latent PAI-1: a possible stabilizing role for chloride ions. Biochemistry. 2000 Jul 25;39(29):8460–8469. doi: 10.1021/bi000290w. [DOI] [PubMed] [Google Scholar]
  45. Wilczynska M., Fa M., Ohlsson P. I., Ny T. The inhibition mechanism of serpins. Evidence that the mobile reactive center loop is cleaved in the native protease-inhibitor complex. J Biol Chem. 1995 Dec 15;270(50):29652–29655. doi: 10.1074/jbc.270.50.29652. [DOI] [PubMed] [Google Scholar]
  46. Wind T., Jensen M. A., Andreasen P. A. Epitope mapping for four monoclonal antibodies against human plasminogen activator inhibitor type-1: implications for antibody-mediated PAI-1-neutralization and vitronectin-binding. Eur J Biochem. 2001 Feb;268(4):1095–1106. doi: 10.1046/j.1432-1327.2001.2680041095.x. [DOI] [PubMed] [Google Scholar]
  47. Wind Troels, Hansen Martin, Jensen Jan K., Andreasen Peter A. The molecular basis for anti-proteolytic and non-proteolytic functions of plasminogen activator inhibitor type-1: roles of the reactive centre loop, the shutter region, the flexible joint region and the small serpin fragment. Biol Chem. 2002 Jan;383(1):21–36. doi: 10.1515/BC.2002.003. [DOI] [PubMed] [Google Scholar]
  48. Xue Y., Björquist P., Inghardt T., Linschoten M., Musil D., Sjölin L., Deinum J. Interfering with the inhibitory mechanism of serpins: crystal structure of a complex formed between cleaved plasminogen activator inhibitor type 1 and a reactive-centre loop peptide. Structure. 1998 May 15;6(5):627–636. doi: 10.1016/s0969-2126(98)00064-1. [DOI] [PubMed] [Google Scholar]
  49. Ye S., Cech A. L., Belmares R., Bergstrom R. C., Tong Y., Corey D. R., Kanost M. R., Goldsmith E. J. The structure of a Michaelis serpin-protease complex. Nat Struct Biol. 2001 Nov;8(11):979–983. doi: 10.1038/nsb1101-979. [DOI] [PubMed] [Google Scholar]
  50. Ye S., Goldsmith E. J. Serpins and other covalent protease inhibitors. Curr Opin Struct Biol. 2001 Dec;11(6):740–745. doi: 10.1016/s0959-440x(01)00275-5. [DOI] [PubMed] [Google Scholar]
  51. von Heijne G. How signal sequences maintain cleavage specificity. J Mol Biol. 1984 Feb 25;173(2):243–251. doi: 10.1016/0022-2836(84)90192-x. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES